THE

 MATHEMATICAL

 MATHEMATICAL

 PRINCIPLES OF

 PRINCIPLES OF
 NATURAL PHILOSOPHY

Sir Isaac Newton
?

1.4en..jiherl.p.45. i.i.horl.p.eng is

minn

$$
15
$$

$$
2)^{2}+9=5
$$

$$
1-\sqrt{3} \mathrm{P}
$$

$$
19
$$

Fox

$$
1
$$

$$
\begin{aligned}
& \text { 3an }
\end{aligned}
$$

THE 51.01 N45i MATHEMATICAL

PRINCIPLES OF

 Natural Philofophy.

 Natural Philofophy.}

By $\operatorname{Sir} I S A A C N E W T O N$

Printed for Benjamin Motte, at the Middle-Temple-Gate, in Fleet/frcet. MACC XXIX.

$$
8,717
$$

The References to the Plate are omitted in the printed Part of the firf Sbeet, but are fupplied by the Schemes themjelves, wibich refer to the Pages to wobich they belong.

OETHE

M O T I O N
 O F
 B O D I E S.
 $\begin{array}{lllll}\mathrm{B} & \mathrm{O} & \mathrm{O} & \mathrm{K} & \mathrm{II} \text {. }\end{array}$

S E C TIO N I.

Of the Motion of Bodies that are refifted in the ratio of the Velocity.

Proposition I. Theorem I. If a body is refited in the ratio of its velocity, the motion loft by reffance is as the fince gone over in its motion.

Cor. Therefore if the body, deftitute of all gravity, move by its innate force only in free fpaces, and there be given both its whole motion at the beginning, and alfo the motion remaining after fome part of the way is gone over; there will be given alfo the whole fpace which the body can defrribe in an infinite time. For that fpace will be to the fpace now defribed, as the whole motion at the beginning is to the part loft of that motion.

Lemma I.

Quantities proportional to their differences are continually proportional.

Let A be to $A-B$ as B to $B-C$ and C to $C-D$, \&ec. and, by converfion, A will be to B as B to C and C to D, \&c. O.E.D.

Proposition II. Theorem II.

If a body is refifted in the ratio of its velocity, and moves, by its vis infita only, through a fimilar medium, and the times be taken equal; the velocities in the beginning of each of the times are in a geometrical progreffion, and the spaces defcribed in each of the times are as the velocities.

Case i. Let the time be divided into equal particles; and if at the very beginning of each particle we fuppofe the refiftance to act with one fingle impulfe which is as the velocity; the decrement of the velocity in each of the particles of time will be as the fame velocity. Therefore the velocities are proportional to their differences, and therefore (by Lem. I. Book 2.)

Sect. I. of Natural Pbilofophy.
continually proportional. Therefore if out of an equal number of particles there be compounded any cqual portions of time, the velocities at the beginning of thofe times will be as terms in a continued progrefion, which are taken by intervals, omitting every where an equal number of intermediate terms. But the ratio's of thefe terms are compounded of the equal ratio's of the intermediate terms equally repeated; and therefore are equal. Therefore the velocities, being proportional to thofe terms, are in geomerrical progreflion. Let thofe equal particles of time be diminifhed, and their number increafed in infinitum, fo that the impulfe of refiftance may become continual; and the velocities at the beginnings of equal times, always continually proportional, will be alfo in this cafe continually. proportional. O. E. D.
CASE 2. And, by divifion, the differences of the velocities, that is, the parts of the velocities lof in each of the times, are as the wholes: But the fpaces defribed in each of the times are as the loft parts of the velocities, (by Prop. r. Book 2.) and therefore are alfo as the wholes. O.E.D.
Corol. Hence if to the reCtangular afymptotes $A C$, $C H$, the Hyperbola $B G$ is defrribed, and $A B, D G$ be drawn perpendicular to the afymptote $A C$, and both the velocity of the body, and the refiftance of the medium, at the very beginning of the motion, be exprefs'd by any given line $A C$, and after fome time is elapfed, by the indefinite line $D C$; the time may be exprefs'd by the area $A B G D$, and the fpace defcribed in that time by the line $A D$. For if that area, by the motion of the point D, be uniformly increafed in the fame manner as the time, the right line $D C$ will decreafe in a geometrical ratio in the fame manner as the velocity, and the parts of the right line $A C$, defrribed in equal times, will decreafe in the fame ratio:

B 2 O

Proposition III. Problfm I.

To define the motion of a body which, in a fimilar medium, afcends or defcends in a right line, and is refifted in the ratio of its velocity, and acted upon by an uniform force of gravity.
The body afcending, let the gravity be expounded by any given rectangle $B A C H$; and the refiftance of the medium, at the beginning of the afcent, by the rectangle $B A D E$, taken on the contrary fide of the right line $A B$. : Through the point B, with the rectangular afymptotes $A C, C H$, defcribe an Hyperbola, cutting the perpendiculars $D E$, de, in G, g; and the body afcending will in the time $D G$ gd defrribe the face EGge; in the time DGBA, the space of the whole afcent $E G B$; in the time $A B K I$, the fpace of defcent $B F K$; and in the time $I K k i$ the face of defcent $K F f k$; and the velocities of the bodies (proportional to the refiftance of the medium) in thefe periods of time, will be $A B E D, A B e d, \cdot 0, A B F I$, $A B f i$ refpetively; and the greateft velocity which the body can acquire by defcending, will be BACH.

For let the rectangle $B A C H$ be refolved into innumerable rectangles $A k, K l, L m, M n$, éc. which thall be as the increments of the velocities produced in fo many equal times; then will $0, A k, A l, A m, A n$, \&c. be as the whole velocities, and therefore (by fuppofition) as the refiftances of the medium in the beginning of each of the equal times. Make $A C$ to $A K$, or $A B H C$ to $A B k K$ as the force of gravity to the refiftance in the beginning of the fecond time ; then from the force of gravity fubduct the refiftances, and $A B H C, K 々 H C, L l H C, M m H C$, \&c. will be as the abfolute forces with which the body is acted upon in the beginning of each of the times, and there-

Sect. I. of Natural Pbilofophy.
fore (by Law 2) as the increments. of the velocities, that is, as the rectangles $A k, K l, L m, M n$, \&ic. and therefore (by Lem. I. Book 2.) in a geometrical progrefion. Therefore if the right lines $K k, L l, M m$, $N n, \& c$. are produced fo as to meet the Hyperbola in $q, r, s, t, \in \subset$. the areas $A B q K, K q r L, \operatorname{Lrs} M, M s t N$, \&c. will be equal, and therefore analogous to the equal times and equal gravitating forces. But the area $A B q K$ (by Corol.3. Lem. 7 \& 8: Book I.) is to the area BL K ${ }^{3 s} \mathrm{Kq}$ to $\frac{1}{2} \mathrm{kq}$, or $A C$ to $\frac{1}{2} A K$, that is as the force of gravity to the refiffance in the middle of the firft time. And by the like reafoning the areas $q K L r$, $r L M s, s M N t$, \&c. are to the areas $g k l r, r l m s$, $s m n t$, \&c. as the gravitating forces to the refiftances in the middle of the fecond, third, fourth time, and fo on. Therefore fince the equal areas $B A K q, q K L r$, ${ }^{r} L M s, s M N t, \& c$. are analogous to the gravitating forces, the areas $B k q, q k l r, r l m s, s m n t$, \&c. will be analogous to the refiltances in the middle of each of the times, that is (by fuppofition) to the velocities, and fo to the fpaces defribed. Take the fums of the analogous quantities, and the areas $B k q, B l r, B m s$, $B n t$, \&c. will be analogous to the whole fpaces defcribed ; and alfo the areas $A B q K, A B r L, A B s M, A B t N$, \& c . to the times. Therefore the body, in defcending, will in any time $A B r L$, defcribe the face $B l r$, and in the time LrtN the fpace rlnt. Q.E.D. And the like demonftration holds in afcending motion.
Corol. i. Therefore the greateft velocity that the body can acquire by falling, is to the velocity acquired in any given time, as the given force of gravity which perpetually acts upon it, to the refifting force which oppofes it at the end of that time.
Corol.2. But the time being augmented in an arithmetical progreffion, the fum of that greateft velocity and the velocity in the afcent, and alfo their difference in the defcent, decreafes in a geometrical progreffion.

COROL. 3. Alfo the differences of the fpaces, which are defrribed in equal differences of the times, decreafe in the fame geometrical progreffion.

Corol. 4. The fpace defribed by the body is the difference of two fpaces, whercof one is as the time raken from the beginning of the defcent, and the other as the velocity; which [fpaces] alfo at the beginning of the defcent are equal among themfelves.

Proposition IV. Problem II.

Suppoling the force of gravity in any fimilar medium to be uniform, and to tend perpendicularly 10 the plane of the horizon; to define the motion of a projectile therein, which fuffers refftance proportional to its velocity.

Let the projectile go from any place D in the ditection of any right line $D P$, and let its velocity at the beginning of the motion be expounded by the length $D P$. From the point P let fall the perpendicu$\mathrm{J} a \mathrm{P} P C$ on the horizontal line $D C$, and cut $D C$ in A, fo that $D A$ may be to $A C$ as the refiftance of the medium arifing from its motion upwards at the beginning, to the force of gravity : or (which comes to the fame) fo that the rettangle under $D A$ and $D P$ may be to that under $A C$ and $C P$, as the whole refiftance at the beginning of the motion to the force of gravity. With the afymptotes $D C, C P$ deferibe any Hyperbola $G T B S$ cutting the perpendiculars $D G, A B$ in G and B; compleat the parallelogram $D G K C$, and let its fide $G K$ cur $A B$ in O. Take a line N in the fame ratio to $Q B$ as $D C$ is in to $C P$; and from any point R of the right line $D C$, erect $R T$ perpendicular to it, meeting the Hyperbola in T, and the right lines $E H, G K, D P$ in I, t, and V; in that perpendicular cular take $V r$ equal to $\frac{t G T}{\mathrm{~N}}$, or, which is the fame thing, take Rr equal to $\frac{G T I E}{\mathrm{~N}}$; and the projectile in the time $D R T G$ will arrive at the point r, defcribing the curve line DraF, the locus of the point r; thence it will come to its greateft height a in the perpendicular $A B$; and afterwards ever approach to the afymptote $P C$. And its velocity in any point r will be as the tangent $r L$ to the curve. Q.E.I.
For N is to $Q B$ as $D C$ to $C P$ or $D R$ to $R V$, and therefore $R V$ is equal to $\frac{D R \times Q B}{\mathrm{~N}}$, and $R r$ (that is, $R V-V r$, or $\left.\frac{D R \times Q B-t G T}{\mathrm{~N}}\right)$ is equal to $D R \times A B-R D G T$

N . Now let the time be expounded by the arca $R D G T$, and (by Laws Cor. 2.) diftinguifh the motion of the body into two others, one of aifenr, the other lateral. And fince the refiffance is as the motion, let that alfo be diftinguifhed into two parts proportional and contrary to the parts of the motion : and therefore the length defrribed by the lateral motion, will be (by Prop. 2. Book 2.) as the line $D R$, and the height (by Prop. 3. Book 2.) as the area $D R \times A B$ $R D G T$, that is, as the line $R r$. But in the very beginning of the motion the area $R D G T$ is equal to the rectangle $D R \times A O$, and therefore that line $R r$ (or $\frac{D R \times A B-D R \times A Q}{\mathrm{~N}}$) will then be to $D R$ as $A B-A Q$ or $Q B$ to N , that is, as $C P$ to $D C$; and therefore as the motion upwards to the motion lengthwife at the beginning. Since therefore $R r$ is always as the height, and $D R$ always as the length, and $R r$ is to $D R$ at the beginning, as the height to the length: it B 4 follows,
follows, that $R r$ is always to $D R$ as the height to the length ; and therefore that the body will move in the line DiaF, which is the locus of the point r. Q.E.D.

Cor. I. Therefore $R r$ is equal to $\frac{D R \times A B}{\mathrm{~N}}-$ $\frac{R D G T}{\mathrm{~N}}$; and therefore if $R T$ be produced to X, fo that $R X$ may be equal to $\frac{D R \times A B}{\mathrm{~N}}$, that is, if the parallelogram $A C P r$ be compleated, and $D r$ cutting $C P$ in Z be drawn, and $R T$ be produced till it meets $D Y$ in $X ; X r$ R DGT
will be equal to $\frac{N}{N}$, and therefore proportional to the time.

Cor. 2. Whence if innumerable lines $C R$, or, which is the fame, innumerable lines $Z X$, be taken in a geometrical progreffion; there will be as many lines $X r$ in an arithmerical progreffion. And hence the curve DraF is eafily delineated by the Table of Logarithms.

Cor. 3. If a Parabola be conftructed to the vertex D, and the diameter $D G$, produced downwards, and its latus reCtum is to $2 D P$ as the whole refiftance at the beginning of the motion to the gravitating force: the velocity with which the body ought to go from the place D, in the direction of the right line $D P$, fo as in an uniform refifting medium to defribe the curve DraF, will be the fame as that with which it ought to go from the fame place D, in the direction of the fame right line $D P$, fo as to defcribe a Parabola in a non-refifting medium. For the latus rectum of this Parabola, at the very beginning of the motion, is $\frac{D V^{2}}{V r}$; and $V r$ is $\frac{t G T}{\mathrm{~N}}$ or $\frac{D R \times T t}{2 \mathrm{~N}}$. But a right
line, which, if drawn, would touch the Hyperbola $G T S$ in G, is parallel to $D K$, and therefore T_{t} is $\frac{C K \times D R}{D C}$, and N is $\frac{Q B \times D C}{C P}$: And therefore $V r$ is equal to $\frac{D R^{2} \times C K \times C P}{2 D C^{2} \times Q B}$, that is, (becaufe $D R$ and $D C, D V$ and $D P$ are proportionals) to $\frac{D V^{2} \times C K \times C P}{2 D P^{2} \times Q Q^{B}}$; and the latus rectum $\frac{D V^{2}}{V r}$ comes out $\frac{2 D P^{2} \times Q B}{C K \times C P}$, that is, (becaufe $Q B$ and $C K, D A$ and $A C$ are proportional) $\frac{2 D P^{2} \times D A}{A C \times C P}$, and therefore is to $2 D P$, as $D P \times D A$ to $C P \times A C$; that is, as the refiftance to the gravity. Q.E.D.
Cor.4. Hence if a body be projected from any place D, with a given velocity, in the direction of a right line $D P$ given by pofition; and the refiftance of the medium, at the beginning of the motion, be given : the curve DraF, which that body will deicribe, may be found. For the velocity being given, the latus reCtum of the parabola is given, as is well known. And taking $2 D P$ to that latus rectum, as the force of gravity to the refifting force, $D P$ is alfo given. Then cutting $D C$ in A, fo that $C P \times A C$ may be to $D P \times D A$ in the fame ratio of the gravity to the refiftance, the point A will be given. And hence the curve DraF is alfo given.
Cor. 5. And on the contrary, if the curve DraF be given, there will be given both the velocity of the body, and the refiftance of the medium in each of the places r. For the ratio of $C P \times A C$ to $D P \times D A$ being given, there is given both the refiftance of the medium at the beginning of the motion, and the latus rectum of the parabola ; and thence the velocity at the begin-
beginning of the motion is given alfo. Then from the length of the tangent $r L$, there is given both the velocity proportional to it, and the refiftance proportional to the velocity in any place r.

Cor. 6 . But fince the length $2 D P$ is to the latus rectum of the parabola as the gravity to the refiffance in D; and, from the velocity augmented, the refiftance is augmented in the fame ratio, but the latus rectum of the parabola is augmented in the duplicate of that ratio; it is plain that the length $2 D P$ is augmented in that fimple ratio only ; and is therefore always proportional to the velocity; nor will it be augmented or diminifhed by the clange of the angle $C D P$, unlefs the velocity be alfo changed.

Cor.7. Hence appears the method of determining the curve DraF, nearly, from the phanomena, and thence collecting the refiftance and velocity with which the body is projected. Let two fimilar and equal bodies be projected with the fame velocity, from the place D, in different angles $C D P, C D P$; and let the places F, f, where they fall upon the horizontal plane $D C$, be known. Then taking any length for $D P$ or $D p$, fuppofe the refiftance in D to be to the gravity in any ratio whatfoever, and let that ratio be expounded by any leagth $S M$. Then by computation, from that affumed length $D P$, find the lengths $D F$, $D f$; and from the ratio $\frac{F f}{D F}$, found by calculation, fubduct the fame ratio as found by experiment ; and let the difference be expounded by the perpendicular $M N$. Repeat the fame a fecond and a third time, by affuming always a new ratio $S M$ of the refiftance to the gravity, and collecting a new difference $M N$. Draw the affirmative differences on one fide of the right line $S M$, and the negative on the other fide; and through the points N, N, N draw a regular curve $N N N$, cutting

Sect. I. of Natural Philofophy.
the right line $S M M M$ in X, and $S X$ will be the true ratio of the refiftance to the gravity, which was to be found. From this ratio the length $D F$ is to be collected by calculation; and a length, which is to the affumed length $D P$, as the length $D F$ known by experiment to the length $D F$ juft now found, will be the true length $D P$. This being known, you will have both the curve line Dr aF which the body defcribes, and alfo the velocity and refiftance of the body in each place.
S с нодivm.

But yet that the refiftance of bodies is in the ratio of the velocity, is more a mathematical hypothefis than a phyfical one. In mediums void of all tenacity, the refiffances made to bodies are in the duplicate ratio of the velocities. For by the action of a fwifter body. a greater motion, in proportion to a greater velocity, is communicated to the fame quantity of the medium, in a lefs time; and in an equal time, by reafon of a greater quantity of the difturbed medium, a motion is communicated in the duplicate ratio greater ; and the refiftance (by Law 2 and 3 .) is as the motion communicated. Let us therefore fee what motions arife from this law of refiftance.

SEC.

S E C TIO N II.

Of the Motion of Bodies that are refifted in the duplicate ratio of their Velocities.

Proposition V. Theorem III.

If a body is refifted in the duplicate ratio of its velocity, and moves by its innate force only through a fimilar medium; and the times be taken in a geometrical progrefion, proceeding from lefs to greater terms: I fay that the velocities at the beginning of each of the times are in the fame geometrical progrefion inverfely; and that the Spaces are equal, which are defcribed in each of the times.

For fince the refiftance of the medium is proportional to the fquare of the velocity, and the decrement of the velocity is proportional to the refiftance; if the time be divided into innumerable equal particles, the fquares of the velocities at the beginning of each of the times will be proportional to the differences of the fame velocities. Let thofe particles of time be $A K, K L, L M, \& c$. taken in the right line $C D$; and erect the perpendiculars $A B$, $K k, L l, M m, \& c$. meeting the Hyperbola $B k l m G$, defcribed with the centre C, and the rectangular afymptotes $C D, C H$, in $B, k, h, m, \& c$. then $A B$ will be to $K k$,

Sect. II. of Natural Pbilofophy.
as $C K$ to $C A$, and, by divifion, $A B-K k$ to $K k$ as $A K$ to $C A$, and, alternately, $A B-K k$ to $A K$ as $K k$ to $C A$, and therefore as $A B \times K k$ to $A B \times C A$. Therefore fince $A K$ and $A B \times C A$ are given, $A B-K k$ will be as $A B \times K k$; and laftly, when $A B$ and $K k$ coincide, as $A B^{2}$. And, by the like reafoning, $K k-L l$, $L l-M m$, \&c. will be as $K k^{2}, L l^{2}, \& \&$. Therefore the fquares of the lines $A B, K k, L l, M m, \& c$. are as their differences; and therefore, fince the Squares of the velocities were fhewn above to be as their differences, the progreffion of both will be alike. This being demonftrated, it follows alfo that the areas defcribed by thefe lines are in a like progreffion with the fpaces defcribed by thefe velocities. Therefore if the velocity at the beginning of the firft time $A K$ be expounded by the line $A B$, and the velocity at the beginning of the fecond time $K L$ by the line $K k_{0}$ and the length defcribed in the firft time by the area $A K k B$; all the following velocities will be expounded by the following lines $L l, M m, \& c$. and the lengths defcribed, by the areas $K l, L m, \& c$. And, by compofition, if the whole time be expounded by $A M$, the fum of its parts, the whole length defrribed will be expounded by $A M m B$ the fum of its parts. Now conceive the time $A M$ to be divided into the parts $A K$, $K L, L M$, \&c. fo that $C A, C K, C L, C M$, \&c. may be in a geometrical progreffion; and thofe parts will be in the fame progreffion, and the velocities $A B, K k$, $L l, M m, \& c$. will be in the fame progreffion inverlly, and the fpaces defrribed $A k, K l, L m$, \&c. will be equal. O.E.D.
Cor. 1. Hence it appears, that if the time be expounded by any part $A D$ of the afymptote, and the velocity in the beginning of the time by the ordinate $A B$; the velocity at the end of the time will be expounded by the ordinate $D G$; and the whole fpace defrribed, by the adjacent hyperbolic area $A B G D$;

Cor. 2. Hence the face defcribed in a refifting medium is given, by taking it to the face defcribed with the uniform velocity $A B$ in a non-refifting medium, as the hyperbolic area $A B G D$ to the reftangle $A B \times A D$.

Cor. 3. The reffiftance of the medium is alfo given, by making it equal, in the very beginning of the motion, to an uniform centripetal force, which could generate, in a body falling thro' a non-refifting medium, the velocity $A B$, in the time $A C$. For if $B T$ be drawn touching the hyperbola in B, and meeting the afymptote in T; the right line $A T$ will be equal to $A C$, and will exprefs the time, in which the firft refiftance uniformly continued, may take away the whole velocity $A B$.

Cor. 4. And thence is alfo given the proportion of this refiftance to the force of gravity, or any other given centripetal force.

Cor. 5. And vice verfa, if there is given the proportion of the refiftance to any given centripetal force; the time $A C$ is alfo given, in which a centripetal force equal to the refiftance may generate any velocity as $A B$; and thence is given the point B, through which the hyperbola, having $C H, C D$ for its afymptotes, is to be defcribed; as alfo the fpace $A B G D$, which a body, by beginning its motion with that velocity $A B$, can defrribe in any time $A D$, in a fimilar refifting medium.

Sect. II. of Natural Philofophy.

'Proposition VI. Theorem IV.

Homogeneous and equal Spherical bodies, oppos'd by refffances that are in the duplicate ratio of the velocities, and moving on by their innate force only, will, in times which are reciprocally as the velocities at the beginning, defcribe equal Spaces, and lofe parts of their velocities proportional to the wholes.
To the rectangular afymptotes $C D, C H$ defcribe any hyperbola $B b E e$, cutting the perpendiculars $A B, a b$, $D E, d e$, in B, b, E, e; let the initial velocities be expounded by the perpendiculars $A B, D E$, and the times by the lines $A a, D d$. Therefore as $A a$ is to $D d$, fo (by the hypothefis) is $D E$ to $A B$, and fo (from the nature of the hyperbola) is $C A$ to $C D$; and, by compofition, fo is Ca to $C d$. Therefore the areas $A B b a, D E e d$, that is, the fpaces defcribed, are equal among themfelves, and the firft velocities $A B, D E$ are proportional to the laft $a b$, de; and therefore, by divifion, proportional to the parts of the velocities lof, $A B-a b, D E-$ de. O.E.D.

Proposition VII. Throrem V.

If fpherical bodies are reffited in the duplicate ratio of their velocities, in times which are as the firft motions directly and the firft refiflances inverfely, they will lofeparts of their motions proportional to the wholes, and will defribe Spaces proportional to thofe times and the firt velocities conjunctly.
For the parts of the motions loft are as the refiffances and times conjunetly. Therefore, that thofe parts may
be proportional to the wholes, the refiftance and time conjunctly ought to be as the motion. Therefore the time will be as the motion directly and the refiftance inverfely. Wherefore the particles of the times being taken in that ratio, the bodies will always lofe parts of their motions proportional to the wholes, and therefore will retain velocities always proportional to their firft velocities, And becaufe of the given ratio of the velocities, they will always defrribe faces, which are as the firft velocities and the times conjunctly. Q.E.D.

Cor. I. Therefore if bodies equally fwift are refifted in a duplicate ratio of their diameters : Homogeneous globes moving with any velocities whatfoever, by defcribing fpaces proportional to their diameters, will lofe parts of their motions proportional to the wholes. For the motion of each globe will be as irs velocity and mafs conjunctly, that is, as the velocity and the cube of its diameter; the reffiftance (by fuppofition) will be as the fquare of the diameter and the fquare of the velocity conjunetly; and the time (by this propofition) is in the former ratio directly and in the latter inverfely, that is, las the diameter directly and the velocity inverfely; and therefore the fpace, which is proportional to the time and velocity, is as the diameter.

Cor. 2. If bodies equally fwift are refifted in a fefquiplicate ratio of their diameters: Homogeneous globes, moving with any velocities whatfoever, by defrribing spaces that are in a fefquiplicate ratio of the diameters, will lofe parts of their motions proportional to the wholes.

Cor. 3. And univerfally, if equally fwift bodies are refifted in the ratio of any power of the diameters : the fpaces, in which homogeneous globes, moving with any velocity whatfoever, will lofe parts of their motrons proportional to the wholes, will be as the cubes of the diameters applied to that power. Let thofe di-
ameters applied to that power. Let thofe diameters be D and E ; and if the refiftances, where the velocities are fuppofed equal, are as D^{n} and E^{n} : the fpaces in which the globes, moving with any velocities whatfoevert, will lofe parts of their motions proportional to the wholes, will be as D^{3-n} and E^{3-n}. And therefore homogeneous globes, in defcribing !paces proportional to D^{3-n} and E^{3-n}, will retain their velocities in the fame ratio to one another as at the beginning.
Cor.4. Now if the globes are not homogeneous, the fpace defcribed by the denfer globe muft be augmented in the ratio of the denifity. For the motion, with an equal velocity, is greater in the ratio of the denfity, and the time (by this Prop.) is augmented in the ratio of motion direaly, and the fpace defribed in the ratio of the time.
Cor. 5. And if the globes move in different mediums, the fpace, in a medium which, cateris paribus, refifts the moft, muft be diminifhed in the ratio of the greater refiftance. For the time (by this Prop.) will be diminifhed in the ratio of the augmented refiflance, and the fpace in the ratio of the time.

Lemma II.

The moment of any Genitum is equal to the moments of each of the generating fides drawn into the indices of the powers of thofe fides, and into their coefficients continually.

I call any quantity a Genitum, which is not made by addition or fubduction of divers parts, but is generated or produced in arithmetic by the multiplication, divifion, orextraction of the root of any terms whatfoever; in geometry by the invention of contents and fides, or of the extreams and means of proportionals, Quantities of
Vol. II.
this kind are produts, quotients, roots, rectangles, fquares, cubes, fquare and cubic fides, and the like. There quantities I here confider as variable and indetermined, and increafing or decreafing as it were by a perpetual motion or flux; and I underfand their momentaneous increments or decrements by the name of Moments; fo that the increments may be efteem'd as added, or affirmative moments; and the decrements as fubducted, or negative ones. But take care not to look upon finite particles as fuch. Finite particles are not moments, but the very quantities generated by the moments. We are to conceive them as the juft nafcent principles of finite magnitudes. Nor do we in this Lemma regard the magnitude of the moments, but their firlt proportion as nafcent. It will be the fame thing, if, inftead of moments, we ufe either the Velocities of the increments and decrements (which may alfo be called the motions, muations, and fluxions of quantities) or any finite quantities proportional to thole velocities. The coefficient of any generating fide is the quantity which arifes by applying the Genitum to that fide.

Wherefore the fenfe of the Lemma is, that if the moments of any quantities A, B, C, \&c. increafing or decreafing by a perpetual flux, or the velocities of the mutations which are proportional to them, be called $a, b, c, \& c$. the moment or mutation of the generated rectangle AB will be $a \mathrm{~B}+6 \mathrm{~A}$; the moment of the generated content ABC will be $a \mathrm{BC}+b \mathrm{AC}+$ ${ }_{c} \mathrm{AB}$: and the moments of the generated powers, A^{2}, $A^{3}, A^{4}, A^{\frac{2}{2}}, A^{\frac{2}{2}}, A^{\frac{1}{3}}, A^{\frac{2}{3}}, A^{-1}, A^{-2}, A^{-\frac{1}{2}}$ will be $2 a \mathrm{~A}, 3 a \mathrm{~A}^{2}, 4 a \mathrm{~A}^{3}, \frac{1}{2} a \mathrm{~A}^{-\frac{1}{2}}, \frac{1}{2} a \mathrm{~A}^{\frac{1}{2}}, \frac{1}{3} a \mathrm{~A}^{-\frac{2}{3}}$, ${ }_{\frac{2}{3}} a \mathrm{~A}^{-\frac{1}{3}},-a \mathrm{~A}^{-2},-2 a \mathrm{~A}^{-3},-\frac{1}{2} a \mathrm{~A}^{-\frac{3}{2}}$ refpectively. And in general, that the moment of any power A^{n} will be $\frac{n}{m}$ a $A^{\frac{n \cdots m}{m}}$. Alfo that the moment

Sect. II. of Natural Pbilofophy.
of the generated quantity $A^{2} B$ will be $2 a A B+-6 A^{2}$; the moment of the generated quantity $\mathrm{A}^{3} \mathrm{~B}^{4} \mathrm{C}^{2}$ will be $3 a A^{2} B^{+} C^{2}+46 A^{3} B^{3} \mathrm{C}^{2}-1-2 c \mathrm{~A}^{3} \mathrm{~B}^{+} \mathrm{C}$; and the moment of the generated quantity $\frac{A^{3}}{B^{2}}$ or $A^{3} B^{-2}$ will be $3 a A^{2} B^{-2}-2 b A^{3} B^{-3}$; and fo on. The Lemma is thus demonftrated.
Case i. Any rectangle a; A B augmented by a perpetual flux, when, as yet, there wanted of the fides A and B half their moments $\frac{1}{2} a$ and $\frac{1}{2} b$, was $\mathrm{A}-\frac{1}{2} a$ into $\mathrm{B}-\frac{1}{2} b$, or $\mathrm{AB}-\frac{1}{2} a \mathrm{~B}-\frac{1}{2} b \mathrm{~A}-1-\frac{1}{4} a b$; but as foon as the fides A and B are augmented by the other half moments; the rectangle becomes $A-1-\frac{1}{2}$ a into B $-1 \frac{1}{2} b$ or A B $-1-\frac{1}{2} a$ B $-1-\frac{1}{2} b A-1-\frac{1}{2} a b$. From this rectangle fubduct the former rectangle, and there will remain the excefs $a \mathrm{~B}-1-6 \mathrm{~A}$. Therefore with the whole increments a and b of the fides, the increment $a \mathrm{~B}+6 \mathrm{~A}$ of the rectangle is generated. Q.E.D.
Case 2. Suppofe AB always equal to G , and then the moment of the content A BC or GC (by Cafe i.) will be $g \mathrm{C}+c \mathrm{G}$, that is, (putting AB and $a \mathrm{~B}+-6 \mathrm{~A}$ for G and g) a B C $-1-6 \mathrm{AC}-1-c \mathrm{AB}$. And the reafoning is the fame for contents under never fo many. fides. Q.E.D.
Case 3. Suppofe the fides A, B, and C, to be always equal among themfelves; and the moment $a B$ +6 A , of A^{2}, that is, of the rectangle AB , will be 2a A ; and the moment $a \mathrm{BC}-1-b \mathrm{AC}-1-c \mathrm{AB}$ of A^{3}, that is, of the content ABC , will be $3 \mathrm{a} \mathrm{A}^{2}$. And by the fame reafoning the moment of any power A^{n} is $n a \mathrm{~A}^{n-1}$. O.E.D.
Case 4. Therefore fince $\frac{1}{A}$ into A is I, the moment of $\frac{1}{A}$ drawn into A, together with $\cdot \frac{1}{A}$ drawn into a, will be the moment of I , that is, nothing. ThereC_{2} fore
fore the moment of $\frac{1}{A}$ or of A^{-1} is $\frac{-a}{A^{2}}$. And generally, fince $\frac{1}{A^{n}}$ into A^{n} is I, the moment of $\frac{1}{A^{n}}$ drawn into A^{n} together with $\frac{1}{\mathrm{~A}^{n}}$ into $n a \mathrm{~A}^{n-1}$ will be nothing. And therefore the moment of $\frac{1}{\mathrm{~A}^{n}}$ or A^{-n} will be $-\frac{n a}{\mathrm{~A}^{n+1}} \cdot$ O $E . D$.

Case 5. And fince $A^{\frac{1}{2}}$ into $A^{\frac{1}{2}}$ is A, the moment of $A^{\frac{1}{2}}$ drawn into $2 A^{\frac{1}{2}}$ will be a, (by Cafe $3:$) and therefore the moment of $\mathrm{A}^{\frac{1}{2}}$ will be $\frac{a}{2 \mathrm{~A}_{\frac{1}{2}}}$ or $\frac{1}{2} a \mathrm{~A}^{-\frac{1}{2}}$. And generally, putting $A^{\frac{m}{n}}$ equal to B, then A^{m} will be equal to B^{n}, and therefore $m a \mathrm{~A}^{m-1}$ equal to $n b \mathrm{~B}^{n-1}$, and $m a \mathrm{~A}^{-1}$ equal to $n b \mathrm{~B}^{-1}$ or $n b \mathrm{~A}^{-\frac{m}{n}}$; and therefore $\frac{m}{n} a A^{\frac{m-n}{n}}$ is equal to b, that is, equal to the moment of $\mathrm{A}^{\frac{m}{n}}$. Q.E.D.

Case 6. Therefore the moment of any generated quantity $A^{m} \mathrm{~B}^{n}$ is the moment of A^{m} drawn into B^{n}, together with the moment of B^{n} drawn into A^{m}, that is, $m a A^{m-1} \mathrm{~B}^{n}-1-n 6 \mathrm{~B}^{n-1} \mathrm{~A}^{m}$; and that whether the indices m and n of the powers be whole numbers or fractions, affirmative or negative. And the reafoning is the fame for contents under more powers. O.E.D.

Cor. r. Hence in quantities continually proportional, if one term is given, the moments of the reft of the terms will be as the fame terms multiplied by

Sect. II. of Natural Philofophy.
the number of intervals between them and the given term. Let A, B, C, D, E, F, be continually proportional; then if the term C is given, the moments of the reft of the terms will be among themfelves, as -2 A , -B, D, $2 \mathrm{E}, 3$ F.

Cor. 2. And if in four proportionals the two means are given, the moments of the extremes will be as thofe extremes. The fame is to be underftood of the fides of any given reCtangle.

Cor. 3. And if the fum or difference of two fquares is given, the moments of the fides will be reciprocally as the fides.

> SCHOLIUM.

In a letter of mine to Mr. 7. Collins, dated December 10. 1672. having defcribed a method of Tangents, which 1 furpected to be the fame with Slufius's method, which at that time was not made publick; I fubjoined thefe words; This is one particular, or rather a corollary, of a general method, which extends itfelf, without any trouble ome calculation, not only to the drawing of Tangents to any Curve lines, whether Geometrical or Mechanical, or any how refpecting right lines or other Curves, but alfo to the refolving other abftrufer kinds of Problems about the crookedne \mathcal{S}, areas, lengths, centres of gravity of Curves, \&c. nor is it (as Hudden's method de Maximis \& Minimis) limited to equations which are free from furd quantities. This method I have interwoven with that other of working in equations, by reducing them to infinite feries. So far that letter. And thefe laft words relate to a Treatife I compofed on that fubject in the year 1671. The foundation of that general method is contained in the preceding Lemma.

Proposition ViII. Throrem VI.

If a body in an uniform medium, being uniformly acted upon by the force of gravity, afcends or defcends in a right line; and the whole fpace defcribed be diftinguibed into equal parts, and in tbe beginning of each of the parts, (by adding or jubducting the refifing force of the medium to or from the force of gravity, when the body afcends or def (cends) you collect the abfolute forces; I fay that thofe ablolute forces are in a geometrical progreffion. Pl. 2. Fig. i.
For let the force of gravity be expounded by the given line $A C$; the force of refiftance by the indefinite line $A K$; the abfolute force in the defcent of the body, by the difference $K C$; the velocity of the body by a line $A P$, which thall be a mean proportional between $A K$ and $A C$, and therefore in a fubduplicate ratio of the refiftance; the increment of the refiftance made in a given particle of time by the lineola $K L$, and the contemporaneous increment of the velocity by the lincola $P O$; and with the centre C, and rectangular afymptores $C A, C H$, defcribe any Hyperbola $B N S$, meeting the erected perpendiculars $A B, K N, L O$ in B, N, and O. Becaule $A K$ is as $A P^{2}$, the moment $K L$ of the one will be as the moment $2 A P Q$ of the other, that is, as $A P \times K C$; for the increment $P Q$ of the velocity is (by Law 2.) proportional to the generating force $K C$. Let the ratio of $K L$ be compounded with the ratio of $K N$, and the rectangle $K L \times K N$ will become as $A P \times K C \times K N$; that is, (becaufe the rectangle $K C$ $\times K N$ is given) as $A P$. But the ultimate ratio of the hyperbolic area $K N O L$ to the rectangle $K L \times K N$ becomes, when the points K and L coincide, the ratia

Sect. II. of Natural Philofophy.
of equality. Therefore that hyperbolic evanefcent area is as AP. Therefore the whole hyperbolic area $A B O L$ is compored of particles $K N O L$ which are always proportional to the velocity $A P$; and therefore is itfelf proportional to the fpace defcribed with that velocity. Let that area be now divided into equal parts, as $A B M I, I M N K, K N O L, \& c$. and the abfolute forces $A C, I C, K C, L C$, \&c. will be in a geometrical progreffion. O.E.D. And by a like reafoning, in the afcent of the body, taking, on the contrary fide of the point A, the equal areas $A B m i$, imnk, knol, \&c. it will appear that the abfolute fortes $A C, i C, k C, l C, \& c$. are continually proportional. Therefore if all the fpaces. in the afcent and defcent are taken equal ; all the abfolute forces $l C, k C, i C, A C$, $I C, K C, L C, \& c$. will be continually proportional. O.E.D.

Cor. i. Hence if the face defcribed be expounded by the hyperbolic area $A B N K$; the force of gravity, the velocity of the body, and the refiftance of the medium, may be expounded by the lines $A C, A P$, and $A K$ refpectively; and vice ver \int a.

Cor.2. And the greateft velocity, which the body can ever acquire in an infinite defcent, will be expounded by the line $A C$.
Cor.3. Therefore if the refiftance of the medium anfwering to any given velocity be known, the greateft velocity will be found, by taking it to that given velocity in a ratio fubduplicate of the ratio which the force of gravity bears to that known refiftance of the medium.

Proposition IX. Theorem VII.

Suppofing what is above demonftrated, I fay that if the tangents of the angles of the fector of a circle, and of an hyperbola, be taken proportional to the velocities, the radius being of a fit magnitude; all the time of the afcent to the bighef place will be as the fector of the circle, and all the time of defrending from the bigheft place as the fector of the hyperbola. Pl. 2. Fig. 2.

To the right line $A C$, which expreffes the force of gravity, let $A D$ be drawn perpendicular and equal. From the centre D with the femidiameter $A D$ defcribe as well the quadrant $A t E$ of a Circle ; as the rectangular Hyperbola $A V Z$, whofe axe is $A X$, principal vertex A, and afymptote $D C$. Let $D p, D P$ be drawn; and the circular fector At D will be as all the time of the afcent to the higheft place; and the hyperbolic fector ATD as all the time of defcent from the higheft place : If fo be that the tangents $A P, A P$ of thofe fectors be as the velocities. Fig. 2.

CASE I. Draw $D v q$ cutting off the moments or leaft particles $t D v$ and $q D p$, defcribed in the fame time, of the fector $A D t$ and of the triangle $A D p$. Since thofe particles (becaufe of the common angle D) are in a duplicate ratio of the fides, the particle $t D v$ will be as $\frac{q D p \times t D^{2}}{p D^{2}}$, that is, (becaufe $t D$ is given) as $\frac{q D p}{p D^{2}}$. But $P D^{2}$ is $A D^{2}+A P^{2}$, that is, $A D^{2}+A D \times$ $A k$, or $A D \times C k$; and $q D p$ is $\frac{1}{2} A D \times p q$. Therefore $t D v$, the particle of the fector, is as $\frac{p q}{C k}$; that

Sect. II. of Natural Pbilofophy.
is, as the leaft decrement $p q$ of the velocity directly, and the force $C k$, which diminifhes the velocity, inverlely; and therefore as the particle of time anfiwering to the decrement of the velocity. And, by compofition, the fum of all the particlest $D v$ in the fector $A D t$, will be as the fum of the particles of time anfiwering to each of the loft particles $p q$, of the decreafing velocity Ap, till that velocity, being diminihed into nothing, vanimes; that is, the whole fector $A D t$ is as the whole time of afcent to the higheft place. O.E.D.
Case 2. Draw DOV cutting off the leaft particles $T D V^{\prime}$ and $P D O$ of the fector $D A V$, and of the triangle $D A O$; and thefe particles will be to each other as $D T^{2}$ to $D P^{2}$, that is, (if $T X$ and $A P$ are parallel) as $D X^{2}$ to $D A^{2}$ or $T X^{2}$ to $A P^{2}$; and, by divifion, as $D X^{2}-T X^{2}$ to $D A^{2}-A P^{2}$. But, from the nature of the hyperbola, $D X^{2}-T X^{2}$ is $A D^{2}$; and, by the fuppolition, $A P^{2}$ is $A D \times A K$. Therefore the particles are to each other as $A D^{2}$ to $A D^{2}$ $A D \times A K$; that is, as $A D$ to $A D-A K$ or $A C$ to $C K$: and therefore the particle $T D V$ of the fector is $\frac{P D Q \times A C}{C K}$; and therefore (becaufe $A C$ and $A D$ are given) as $\frac{P Q}{\boldsymbol{C K}}$; that is, as the increment of the velocity directly, and as the force generating the increment inverfely ; and therefore as the particle of the time anfwering to the increment. And, by compofition, the fum of the particles of time, in which all the particles $P Q$ of the velocity $A P$ are generated, will be as the fum of the particles of the fector $A T D$; that is, the whole time will be as the whole fector. O.E.D.
Cor. I. Hence if $A B$ be equal to a fourth part of $A C$, the fpace which a body will defcribe by falling in any time will be to the fpace which the body could defribe, by moving uniformly on in the fame time with
with its greatef velocity $A C$, as the area $A B N K$, which expreffes the fpace defcribed in falling, to the area $A T D$, which expreffes the time. For fince $A C$ is to $A P$ as $A P$ to $A K$, then (by Cor. I. Lem. 2. of this Book) $L K$ is to $P Q$ as $2 A K$ to $A P$, that is, as $2 A P$ to $A C$, and thence $L K$ is to $\frac{1}{2} P O$ as $A P$ to $\frac{1}{4} A C$ or $A B$; and $K N$ is to $A C$ or $A D$ as $A B$ to $\stackrel{+}{C} K$; and therefore, ex aquo, LKNO to $D P Q$ as $A P$ to $C K$. But $D P Q$ was to $D T V$ as $C K$ to $A C$. Therefore, ex aquo, $L K N O$ is to $D T V$ as $A P$ to $A C$; that is, as the velocity of the falling body to the greateft velocity which the body by falling can acquire. Since therefore the moments $L K N O$ and $D T V$ of the areas $A B N K$ and $A T D$ are as the velocities, all the parts of thofe areas generated in the fame time, will be as the fpaces defribed in the fame time; and therefore the whole areas $A B N K$ and $A D T$ gencrated from.the beginning, will be as the whole fpaces defcribed from the beginning of the defcent. O.E.D.

Cor. 2. The fame is true alfo of the fpace defribed in the afcent. That is to fay, that all that fpace is to the face defcribed in the fame time with the uniform velocity $A C$, as the area $A B n k$ is to the fector ADt.

Cor. 3. The velocity of the body, falling in the time $A T D$, is to the velocity which it would acquire in the fame time in a non-refifting fpace, as the triangle $A P D$ to the hyperbolic fector $A T D$. For the velocity in a non-refifting medium would be as the time $A T D$, and in a refifting medium is as $A P$, that is, as the triangle $A P D$. And thofe velocities at the beginning of the defcent, are equal among themelves, as well as thofe areas $A T D, A P D$.

Cor.4. By the fame argument, the velocity in the afcent is to the velocity with which the body in the fame time, in a non-refifting fpace, would lofe

Sect. II. of Natural Pbilofophy.
all its motion of afcent, as the triangle $A p D$ to the circular fector $A t D$; or as the right line $A p$ to the arc At.

Cor. 5. Therefore the time in which a body by falling in a refifting medium, would acquire the velocity $A P$, is to the time in which it would acquire its greateft velocity $A C$ by falling in a non-refifting fpace, as the fector $A D T$ to the triangle $A D C$: and the time in which it would lofe its velocity $A p$ by afcending in a reffiting medium, is to the time in which it would lofe the fame velocity by afcending in a nonrefifting fpace, as the arc $A t$ to its tangent $A p$.

Cor. 6. Hence from the given time there is given the fpace defcribed in the afcent or defcent. For the greateft velocity of a body defcending in infinitum is given (by Corol. 2 and 3. Theor. 6. of this Book) and thence the time is given in which a body would acquire that velocity by falling in a non-refifting fpace. And taking the fector $A D T$ or $A D t$ to the triangle $A D C$ in the ratio of the given time to the time juft now found ; there will be given both the velocity $A P$ or $A p$, and the area $A B N K$ or $A B n k$, which is to the fector $A D T$, or $A D t$, as the fpace fought to the fpace which would, in the given time, be uniformly defcribed with that greateft velocity found jult before.

Cor. 7. And by going backward, from the given fpace of afcent or defcent $A B n k$ or $A B N K$, there will be given the time $A D t$ or $A D T$.

Proposition X. Problem III.

Suppose the uniform force of gravity to tend directly to the plane of the borizon, and the refiftance to be as the denfity of the medium and the fquare of the velocity conjunctly: it is proposed to find the denfity of the medium in each place, which fhall make the body move in any given curve line; the velocity of the body, and the refiftance of the medium in each place. Pl.2. Fig. 3.

Let $P Q$ be a plane perpendicular to the plane of the fcheme itfelf; $P F H O$ a curve line meeting that plane in the points P and O; G, H, I, K four places of the body going on in this curve from F to $\frac{O}{}$; and $G B, H C, I D, K E$ four parallel ordinates let fall from thefe points to the horizon, and ftanding on the horizontal line $P Q$ at the points B, C, D, E; and let the diftances $B C, \bar{C} D, D E$, of the ordinates be equal among themfelves. From the points G and H let the right lines $G L, H N$, be drawn touching the curve in G and H, and meeting the ordinates $C H, D 1$, produced upwards, in L and N; and compleat the parallelogram HCD M. And the times, in which the body defcribes the arcs $G H, H I$, will be in a fubduplicate ratio of the altitudes $L H, N I$, which the bodies would defrribe in thofe times, by falling from the tangerts; and the velocities will be as the lengths defcribed $G H, H I$ directly and the times inverfely. Let the times be expounded by T and t, and the velocities by $\frac{G H}{T}$ and $\frac{H I}{t}$; and the decrement of the velocity

Seat.II. of Natural Pbilooophy.
produced in the time t will be expounded by $\frac{G H}{T}-$ $\frac{H I}{t}$. This decrement arifes from the refiftance which retards the body, and from the gravity which accelerates it. Gravity, in a falling body, which in its fall defcribes the fpace $N I$, produces a velocity, with which it would be able to defrribe twice that fpace in the fame time, as Galileo has demonftrated; that is, the velocity $\frac{2 N I}{t}$: but if the body defcribes the arc $H I$, it augments that arc only by the length $H I-H N$ or $\frac{M I \times N I}{H I}$; and therefore generates only the velo-: city $\frac{2 M I \times N I}{t \times H I}$. Let this velocity be added to the beforementioned decrement, and we fhall have the decrement of the velocity arifing from the refiftance alone, that is, $\frac{G H}{T}-\frac{H I}{t}+\frac{2 M I \times N I}{t \times H I}$. Therefore fince in the fame time, the action of gravity generates, in a falling body, the velocity $\frac{2 N I}{t}$; the refiftance will be to the gravity as $\frac{G H}{\mathrm{~T}}-\frac{H I}{t}-\frac{2 M I \times N I}{t \times H I}$ to $\frac{2 N I}{t}$, or as $\frac{t \times G H}{\mathrm{~T}}-H I-1-\frac{2 M I \times N I}{H I}$ to $2 N I$.
Now for the abfciffa's $C B, C D, C E$ put - 0,0 , 20. For the ordinate $C H$ put P ; and for $M I$ put any feries $\mathrm{Q}_{0}-1-\mathrm{R} \boldsymbol{o}^{2}-\mathrm{So}_{0^{3}}$ \&c. And all the terms of the feries after the firft, that is, $\mathrm{R} o^{2}+$ So ${ }^{3}$ tr \&c. will be $N I$; and the ordinates $D I, E K$ and $B G$ will be $\mathrm{P}-\mathrm{Q}_{0}-\mathrm{R}^{0} \mathrm{o}^{2}-\mathrm{So}^{3}$ - \&c. P ${ }^{2} \mathrm{Q}_{0}-4 \mathrm{R} o^{2}-8 \mathrm{So}^{3}-\& c$ and $\mathrm{P}+\mathrm{Q}_{0}-\mathrm{R}^{2}$ $+\mathrm{So}^{3}$ - \&c. refpectively. And by fquaring the differences of the ordinates $B G-C H$ and $C H-D I$, and to the fquares thence produced adding the fquares of $B C$ and $C D$ themfelves, you will have $00-1-\mathrm{QQ} 00$ $-2 Q^{2} 0^{3}+8 c$ and $00-1-Q Q 00-2 Q_{0} 0^{3}-1-$ \&c. the fquares of the arcs $G H, H I$; whofe roots $0 \sqrt{I-Q Q}-\frac{Q R 00}{\sqrt{I-1-Q Q}}$, and o $\sqrt{I-1 Q Q-1-}$ QRoo $\overline{\sqrt{\mathrm{I}+\mathrm{QQ}}}$ are the arcs $G H$ and $H I$. Moreover, if from the ordinate $C H$ there be fubducted half the fum of the ordinates $B G$ and $D I$, and from the ordinate $D I$ there be fubducted half the fum of the ordinates $C H$ and $E K$, there will remain Roo and Roo-1-3So3 the verfed fines of the arcs $G I$ and $H K$. And thefe are proportional to the lineolx $L H$ and $N I$, and therefore in the duplicate ratio of the infinitely fmall times T and t : and thence the ratio $\frac{t}{\mathrm{~T}}$ is $\sqrt{ } \frac{\mathrm{R}-\mathrm{z}^{\mathrm{S}} 0}{\mathrm{R}}$ or $\frac{\mathrm{R}-1-\frac{3}{2} \mathrm{So}}{\mathrm{R}}$; and $\frac{t \times G H}{\mathrm{~T}}-H I+\frac{2 M I \times N I}{H I}$, by fubflituting the values of $\frac{t}{\mathrm{~T}}, G H, H I, M I$ and $N I$ juft found, becomes $\frac{3 \text { Soo }}{2 \mathrm{R}} \sqrt{1-1 \mathrm{QQ}}$. And fince $2 N I$ is 2 Roo, the refiftance will be now to the gravity as $\frac{3 S_{00}}{2 R} \sqrt{I-1-Q Q}$ to $2 R 00$, that is, as $3 S \sqrt{I+Q Q}$ to 4 R R.

And the velocity will be fuch, that a body going off therewith from any place H, in the direction of the tangent $H N$, would defcribe, in vacuo, a Parabola, whofe diameter is $H C$, and its latus reftum $\frac{H N^{2}}{N I}$ or $\frac{1-Q Q}{\mathrm{R}}$.

Sect. II. of Natural Pbilofophy.
And the refiftance is as the denfity of the medium and the fquare of the velocity conjunctly; and therefore the denfity of the medium is as the refiftance directly, and the fquare of the velocity inverfely; that is, as $\frac{3 S \sqrt{1-1-Q Q}}{4 R R}$ directly and $\frac{1-1-Q Q}{R}$ inverfely; that is, as $\frac{\mathrm{S}}{\mathrm{R} \sqrt{\mathrm{I}-1 \mathrm{QQ}}}$ O.E.I.
Cor. I. If the tangent $H N$ be produced both ways, fo as to meet any ordinate $A F$ in $T: \frac{H T}{A C}$ will be equal to $\sqrt{I-Q Q}$, and therefore in what has gone before may be put for $\sqrt{I-Q Q}$. By this means the refiftance will be to the gravity as $3 \mathrm{~S} \times H T$ to $4 \mathrm{RR} \times A C$; the velocity will be as $\frac{H T}{A C \sqrt{ } \mathrm{R}}$, and the denfity of the medium will be as $\frac{\mathrm{S} \times A C}{\mathrm{R} \times H T}$.
Cor. 2. And hence, if the curve line PFHO be defined by the relation between the bafe or abfciffa $A C$ and the ordinate $C H$, as is ufual; and the value of the ordinate be refolved into a converging feries: The problem will be expeditioufly folved by the firft terms of the feries; as in the following examples.
Example i. Let the line $P F H O$ be a femi-circle defcribed upon the diameter $P Q$; to find the denfity of the medium that fhall make a projectile move in that line.
Bifect the diameter $P Q$ in A; and call $A Q, n$; $A C, a ; C H, c$; and $C D, o:$ then $D I^{2}$ or $A O O^{2}-$ $A D^{2}=n n-a a-2 a 0-00$, or $e e-2 a 0-00$; and the root being extracted by our method, will give

$$
D I=e-\frac{a 0}{c}-\frac{00}{2 e}-\frac{a a 00}{2 e^{3}}-\frac{a 0^{3}}{2 e^{3}}-\frac{a^{3} 0^{3}}{2 e^{5}}-
$$

\&c. Here put $n n$ for $e e \frac{1}{1} a a$, and $D I$ will become $=e-\frac{a 0}{e}-\frac{n n 00}{2 e^{3}}-\frac{a n n 0^{3}}{2 e^{5}}-\& c$.
Such feries I diftinguifh into fucceffive terms after this manner: I call that the firft term, in which the intinitely fmall quantity o is not found; the fecond, in which that quantity is of one dimenfion only; the third, in which it arifes to two dimenfions; the fourth, in which it is of three; and fo ad infinitum. And the firft term, which here is e, will always denote the length of the ordinate $C H$, ftanding at the beginning of the indefinite quantity 0 . The fecond term, which here is $\frac{a 0}{e}$, will denote the difference between $C H$ and $D N$; that is, the lineola $M N$ which is cut off by compleating the parallelogram $H C D M$; and therefore always determines the pofition of the tangent $H N$; as, in this cafe, by taking $M N$ to $H M$ is $\frac{a 0}{e}$ to 0 , or a to e. The third term, which here is
$\frac{n n o 0}{2 e^{3}}$, will reprefent the lineola $I N$, which lies between the tangent and the curve; and therefore determines the angle of contact $I H N$, or the curvature which the curve line has in H. If that lineola $I N$ is of a finite magnitude, it will be exprefs'd by the third term together with thofe that follow in infinitum. But if that lineola be diminithed in infinitum, the terms following become infinitely lefs than the third term, and therefore may be neglected. The fourth term determine's the variation of the curvature; the fifth, the variation of the variation; and fo on. Whence, by the way, appears no contemprible ufe of thefe feries in the fohution of problems that depend upon tangents; and the curvature of curves.

Sect. II. of Natural Pbilofophy.
Now compare the feries $e-\frac{a 0}{e}-\frac{n n 00}{2 e^{3}}-\frac{a n n 0^{3}}{2 e^{5}}$ $-\& c$. with the feries $\mathrm{P}-\mathrm{Q}_{0}-\mathrm{R}_{00}-\mathrm{S}_{0^{3}}$ - \& and for P, Q, R and S put $e, \frac{a}{e}, \frac{n n}{2 e^{3}}$ and $\frac{a n n}{2 e^{j}}$, and for $\sqrt{1-1-Q Q}$ put $\sqrt{1+\frac{a a}{c e}}$ or $\frac{n}{c}$; and the denfity of the medium will come out as $\frac{a}{n e}$, that is, (becaufe n is given) as $\frac{a}{e}$, or $\frac{A C}{C H}$, that is, as that length of the tangent $H T$, which is terminated at the femidiameter $A F$ ftanding perpendicularly on $P Q$: and the refiffance will be to the gravity as $3 a$ to $2 n$, that is, as $3 A C$ to the diameter $P O$ of the circle; and the velocity will be as $\sqrt{ } \mathrm{CH}$. Therefore if the body goes from the place F, with a due velocity, in the direction of a line parallel to $P Q$, and the denfity of the medium in each of the places H is as the length of the tangent $H T$, and the refiftance alfo in any place H is to the force of gravity as $3 A C$ to $P Q$, that body will defrribe the quadrant $F H O$ of a circle. O.E.I.
But if the fame body flould go from the place P, in the direction of a line perpendicular to $P O$, and Should begin to move in an arc of the femi-circle $P F Q$, we muft take $A C$ or a on the contrary fide of the centre A; and therefore its fign muft be changed, and we muft put - a for + a. Then the denfity of the medium would come out as $-\frac{a}{e}$. But nature does not admit of a negative denfity, that is, a denfity which accelerates the motion of bodies; and therefore it cannot naturally come to pafs, that a body by afcending from P hould defcribe the quadrant $P F$ of a circle. To produce fuch an effect, a body ought to be acceYol. II.

D
lerated
lerated by an impelling medium, and not impeded by a reffifting one.

Example 2. Let the line $P F O$ be a Parabola, having its axis $A F$ perpendicular to the horizon $P O$; to find the denfity of the medium, which will make a projectile move in that line. Fig. 4.

From the nature of the Parabola, the rettangle $P D \underline{Q}$ is equal to the rectangle under the ordinate $D I$ and fome given right line: that is, if that right line be called $b ; P C, a ; P Q, c ; C H, e$; and $C D, o$; the rectangle $a-\mid-0$ into $c-a-0$ or $a c-a a-2 a 0-1$ -co-oo is equal to the retangle b into $D I$, and therefore $D I$ is equal to $\frac{a c-a a}{b}+\frac{c-2 a}{b} 0-$ $\frac{00}{b}$. Now the fecond term $\frac{c-2 a}{b} 0$ of this feries is to be put for Q_{0}, and the third term $\frac{00}{b}$ for Roo. But fince there are no more terms, the coefficient S of the fourth term will vanifh; and therefore the quantity S
$\frac{\mathrm{R} \sqrt{1-1-\mathrm{QQ}}}{}$, to which the denfity of the medium is proportional, will be nothing. Therefore, where the medium is of no denfity, the projectile will move in a Parabola ; as Galileo hath heretofore demonftrated. O.E.I.

Example 3. Let the line $A G K$ be an Hyperbola, having its afymptote $N X$ perpendicular to the horizontal plane $A K$; to find the denfity of the medium, that will make a projectile move in that line. Fig. 5 .

Let $M X$ be the other afymptote, meeting the ordinate $D G$ produced in V; and from the nature of the Hyperbola, the rectangle of $X V$ into $V G$ will be given. There is alfo given the ratio of $D N$ to $V X$, and therefore the rectangle of $D N$ into $V G$ is given. Let that be 66 : and, compleating the parallelogram

Sect. II. of Natural Pbilofophy.
$D N X Z$; let $B N$ be called $a ; B D, o ; N X, c$; and let the given ratio of $V Z$ to $Z X$ or $D N$ be $\frac{m}{n}$. Then $D N$ will be equal to $a-0, V G$ equal to $\frac{b b}{a-0}, V Z$ equal to $\frac{m}{n} \overline{\times a-0}$, and $G D$ or $N X-V Z-V G$ equal to $c-\frac{m}{n} a+\frac{m}{n} o-\frac{b b}{a-0}$. Let the term $\frac{b b}{a-o}$ be refolved into the converging feries $\frac{b b}{a}+1-\frac{b b}{a a} a+$ $\frac{b b}{a^{3}} 00-1-\frac{b b}{a^{2}} 0^{3}$ \&c. and $G D$ will become equal to c $\frac{m}{n} a-\frac{b b}{a}-1-\frac{m}{n} o-\frac{b b}{a a} o-\frac{b b}{a^{3}} o^{2}-\frac{b b}{a^{4}} o^{3}$ \&c. The fecond term $\frac{m}{n} o-\frac{b b}{a a} o$ of this feries is to be ufed for Qo, the third $\frac{b b}{a^{3}} o^{2}$ with its fign changed for $R o^{2}$, and the fourth $\frac{b b}{a^{4}} 0^{3}$ with its fign changed alfo for So 0^{3}, and their coefficients $\frac{m}{n}-\frac{b b}{a a}, \frac{b b}{a^{3}}$ and $\frac{b b}{a^{4}}$ are to be put for Q, R and S in the former Rule. Which being done, the denfity of the medium
will come our as

$$
\frac{b}{\frac{b b}{a^{3}} \sqrt{1+\frac{m m}{n n}-\frac{2 m b b}{n a a}+\frac{b^{+}}{a^{+}}}} \text {or }
$$

$\frac{1}{\sqrt{a A+\frac{m m}{n n} a a-\frac{2 m b b}{n^{n}}+\frac{b^{4}}{a a}}}$, that is, if in $V Z$
you take $V r$ equal to $V G$, as $\frac{1}{X Y}$. For $a a$ and $\frac{m^{2}}{n^{2}} a^{2}$: $-\frac{2 m b b}{n}+1-\frac{b^{4}}{a a}$ are the fquares of $X Z$ and $Z r$. But the rat:o of the refiftance to gravity is found to be that of ${ }_{3} X X$ to $2 Y G$; and the velocity is that with which the body would defcribe a Parabola, whofe vertex is G, diameter $D G$, latus retuum $\frac{X Y^{2}}{V G}$. Suppofe therefore that the denfities of the medium in each of the places G are reciprocally as the diftances $X T$, and that the refiftance in any place G is to the gravity as $3 X Y$ to $2 \Upsilon G$; and a body let go from the place A, with a due velocity, will defcribe that Hyperbola $A G K$. O.E.I.

Example 4. Suppofe indefinitely, the line $A G K$ to be an Hyperbola, defcribed with the centre X, and the afymptores $M X, N X$, fo that, having conftructed the rectangle $X Z D N$, whofe fide $Z D$ cuts the Hyperbola in G and its afymptote in $V, V G$ may be reciprocally as any power $D N^{n}$ of the line $Z X$ or $D N$, whofe index is the number n : To find the denfity of the medium in which a projected body will defcribe this curve. Fig. s.
For $B N, B D, N X$ put $\mathrm{A}, \mathrm{O}, \mathrm{C}$ refpectively, and let $V Z$ be to $X Z$ or $D N$ as d to c, and $V G$ be equal to $\frac{b b}{D N^{n}}$; then $D N$ will be equal to $\mathrm{A}-\mathrm{O}, V G=$ $\frac{66}{\overline{\mathrm{~A}-\mathrm{O}_{1}^{n}}}, V Z=\frac{d}{c} \overline{\mathrm{~A}-\mathrm{O}, \text { and } G D \text { or } N X-V Z}$ $-V G$ equal to $\mathrm{C}-\frac{d}{c} \mathrm{~A}+\frac{d}{c} \mathrm{O}-\frac{b b}{\overline{\mathrm{~A}-\left.\mathrm{O}\right|^{n}}}$. Let the term $\frac{b b}{\mathrm{~A}-\left.\mathrm{O}\right|^{n}}$ be refolved into an infinite feries $\frac{b b}{\mathrm{~A}^{n}}$

Scat. II. of Natural PhiloSophy: 37 $+\frac{n 66}{\mathrm{~A}^{n+1}} \times \mathrm{O}+\frac{n n-1-n}{2 \mathrm{~A}^{n+2}} \times 66 \mathrm{O}^{2}-1-\frac{n^{3}-1-3 n n-1-2 n}{6 \mathrm{~A}^{n+3}}$
$\times 66 \mathrm{O}^{3} \& \mathrm{c}$. and $G D$ will be equal to $\mathrm{C}-\frac{d}{e} \mathrm{~A}-$ $\frac{66}{\mathrm{~A}^{n}}+\frac{d}{c} \mathrm{O}-\frac{n 6 b}{\mathrm{~A}^{n+1}} \mathrm{O}-\frac{-1-n n-1-n}{2 \mathrm{~A}^{n+2}} 66 \mathrm{O}^{2}-$ $\frac{1-n^{3}-1-3 n n-1-2 n}{6 \mathrm{~A}^{n+3}} 66 \mathrm{O}^{3}$ \&cc. The fecond term $\frac{d}{e} \mathrm{O}-\frac{n b b}{\mathrm{~A}^{n+1}} \mathrm{O}$ of this fries is to be ufed for Qa, the third $\frac{n n-1-n}{2 \mathrm{~A}^{n+2}} 66 \mathrm{O}^{2}$ for Roo, the fourth $\frac{n^{3}+-3 n n-1-2 n}{6 \mathrm{~A}^{n+3}} 66 \mathrm{O}^{3}$ for $\mathrm{S}_{0}{ }^{3}$. And thence the denfifty of the medium $\frac{S}{R \sqrt{I-1-Q Q}}$, in any place G, will be $\frac{n-1-2}{3 \sqrt{\mathrm{~A}^{2}+\frac{d d}{c e} \mathrm{~A}^{2}-\frac{2 d n b b}{c \mathrm{~A}^{n}} \mathrm{~A}+\frac{n n b^{+}}{\mathrm{A}^{2 n}}}}$, and
therefore if in $V Z$ you take $V Y$ equal to $n \times V G$, that denfity is reciprocally as $X Y$. For A^{2} and $\frac{d d}{e e} \mathrm{~A}^{2}-$ $\frac{2 d n b b}{c \mathrm{~A}^{n}} \mathrm{~A}+\frac{n n b^{4}}{\mathrm{~A}^{2 m}}$ are the fquares of $X Z$ and $Z r$. But the refiftance in the fame place G is to the force of gravity as $3 \mathrm{~S} \times \frac{X r}{\mathrm{~A}}$ to 4 R R , that is, as $X Y$ to $\frac{2 n n-1-2 n}{n+2}$ VG. And the velocity there, is the fame wherewith the projected body would move in a Pa rabola, whore vertex is G, diameter $G D$, and latus rectum $\frac{1-Q Q}{R}$ or $\frac{2 X Y^{2}}{\substack{n-1-x \\ D_{3}}}$. R.E.I. Sc ho:
SCHOLIUM.

In the fame mariner that the denfity of the medium comes out to be as $\frac{\mathrm{S} \times A C}{\mathrm{~K} \times H T}$, in Corol. I. if the refiftance is put as any power V^{n} of the velocity V , the denfity of the medium will come out to be as $\frac{\mathrm{S}}{\mathrm{R}^{\frac{4-n}{2}}} \times\left.\overline{\overline{A C}} \overline{H T}\right|^{n-1} \quad$ Fig. 3 .

And therefore if a curve can be found, fuch that the ratio of $\frac{\mathrm{S}}{\mathrm{R}^{\frac{4-n}{2}}}$ to $\left.\frac{\overline{H T}}{A C}\right|^{n-1}$, or of $\frac{\mathrm{S}^{2}}{\mathrm{R}^{4-n}}$ to $\left.\overline{\mathrm{I}-1} \overline{\mathrm{QQ}}\right|^{n-1}$ may be given : the body, in an uniform medium, whofe refiftance is as the power V^{n} of the velocity V, will move in this curve. But let us return to more fimple curves.

Becaufe there can be no motion in a Parabola except in a non-refifting medium, but in the Hyperbola's here defrribed 'tis produced by a perpetual refiftance; it is evident that the line which a projectile defcribes in an uniformly refifting medium, approaches nearer to thefe Hyperbola's than to a Parabola. That line is certainly of the hyperbolic kind, but about the vertex it is more diftant from the afymptotes, and in the parts remote from the vertex draws nearer to them, than thefe Hyperbola's here defcribed. The difference however is not fo great between the one and the other, but that thefe latter may be commodioully enough ufed in practice inftead of the former. And perhaps thefemay prove more ufeful, than an Hyperbola that is more accurate, and at the fame time more compounded. They, may be made ufe of then in this manner. Fig. 5 .

Come

Sect. II. of Natural Pbilooophy.
Compleat the parallelogram $X \Upsilon G T$, and the right line $G T$ will touch the hyperbola in G, and therefore the denfity of the medium in G is reciprocally as the tangent $G T$, and the velocity there, as $\sqrt{ } \frac{G T^{2}}{G V}$, and the refiftance is to the force of gravity as $G T$ to $\frac{2 n n-1-2 n}{n-1} \times G V$.
Therefore if a body projected from the place A in the direction of the right line $-A H$, (Fig. 6.) defcribes the Hyperbola $A G K$, and $A H$ produced meets the afymptote $N X$ in H, and $A I$ drawn parallel to it meets the other afymptote $M X$ in I; the denfity of the medium in A will be reciprocally as $A H$, and the velocity of the body as $\sqrt{ } \frac{A H^{2}}{A I}$, and the refiftance there to the force of gravity as $A H$ to $\frac{2 n n-\frac{1-2 n}{n-1-2}}{n}$
\times AI. Hence the following rules are deduced.
Rule i. If the denfity of the medium at A, and the velocity with which the body is projected remain the fame, and the angle $N A H$ be changed; the lengths $A H, A I, H X$ will remain. Therefore if thofe lengths, inany one cafe, are found, the Hyperbola may afterwards be eafily determined from any given angle NAH.
Rule 2. If the angle $N A H$, and the denfity of the medium at A remain the fame, and the velocity with which the body is projected be changed, the length $A \boldsymbol{H}$ will continue the fame; and $A I$ will be changed in a dup icate ratio of the velocity reciprocally.
Rule 3. If the angle $N A H$, the velocity of the body at \boldsymbol{A}, and the accelerative gravity remain the fame, and the proportion of the refiftance at A to the motive gravity be augmented in any ratio ; the proportion of $A H$ to $A I$ will be augmented in the fame ratio, D 4
the
the latus rectum of the abovementioned Parabola remaining the fame, and alfo the length $\frac{A H^{2}}{A I}$ proportional to it ; and therefore $A H$ will be diminifhed in the fame ratio, and $A I$ will be diminiffed in the duplicate of that ratio. But the proportion of the refiftance to the weight is augmented, when either the fpecific gravity is made lefs, the magnitude remaining equal, or when the denfity of the medium is made greater, or when, by diminifhing the magnitude, the refiftance becomes diminithed in a lefs ratio than the weight.

Rule 4. Becaufe the denfity of the medium is greater near the vertex of the Hyperbola, than it is in the place A; that a mean denfity may be preferv'd, the ratio of the leaft of the tangents $G T$ to the tangent $A H$ ought to be found, and the denfity in A augmented in a ratio a little greater than that of half the fum of thofe tangents to the leaft of the tangents $G T$.

Rule 5 . If the lengths $A H, A I$ are given, and the figure $A G K$ is to be defcribed : produce $H N$ to X, fo that $H X$ may be to $A I$ as $n-\mid-1$ to I ; and with the centre X, and the afymptotes $M X, N X$ defcribe an Hyperbola thro' the point A, fuch that $A I$ may be to any of the lines $V G$ as $X V^{\text {s }}$ to $X I^{n}$.

Rule 6 . By how much the greater the number n is, fo much the more accurate are thefe Hyperbola's in the afcent of the body from A, and lefs accurate in its defcent to K; and the contrary. The Conic Hyperbola keeps a mean ratio between thefe, and is more limple than the reft. Therefore if the Hyperbola be of this kind, and you are to find the point K, where the projected body falls upon any right line $A N$ paffing thro' the point $A: \operatorname{let} A N$ produced meet the afymptotes $M X, N X$ in M and N, and take $N K$ equal to AM.

Rule 7. And hence appears an expeditious method of determining this Hyperbola from the phenomena.

Sea. II. of Natural Philofophy:
Let two fimilar and equal bodies be projetted with the fame velocity, in different angles $\boldsymbol{H} A K$, h $A k$, (Fig. 6.) and let them fall upon the plane of the horizon in K and k; and note the proportion of $A K$ to $A k$. Let it be as d to e. Then erecting a perpendicular $A I$ of any length, affume any how the length $A \boldsymbol{H}$ or $A b$, and thence graphically, or by fcale and compafs, collect the lengths $A K, A k$ (by Rule 6.) If the ratio of $A K$ to $A k$ be the fame with that of d to e, the length of $A H$ was rightly affumed. If not, take on the indefinite right line $S M$, (Fig.7.) the length $S M$ equal to the affumed $A H$; and erect a perpendiculir $M N$, equal to the difference $\frac{A K}{A k}-\frac{d}{c}$ of the ratio's drawn into any, given right line. By the like method, from feveral affumed lengths $A H$, you may find feveral points N; add draw thro' them all a regular curve $N N X N$, cutting the right line $S M M M$ in X. Laftly, affume $A H$ equal to the abfciffa $S X$, and thence find again the length $A K$; and the lengths, which are to the affumed lengh $A I$ and this laft $A H$, as the length $A K$ known by experiment, to the length $A K$ laft found, will be the true lengths $A I$ and $A H$, which were to be found. But thefe being given, there will be given alfo the refifting force of the medium in the place A, it being to the force of gravity as $A H$ to $2 A I$. Let the denfity of the medium be increafed by Rule 4 . and if the refifting force juft found be increafed in the fame ratio, it will become ftill more accurate.
Rule 8. The lengths $A \boldsymbol{H}, \boldsymbol{H} X$ being found; let there be now required the pofition of the line $A H$, according to which a projectile thrown with that given velocity, fhall fall upon any point K. At the points A and K, (Fig σ.$) erect the lines A C, K F$ perpendicular to the horizon; whereof let $A C$ be drawn downwards, and be equal to $A I$ or $\frac{1}{2} H X$. With the afymptotes $A K, K F$, defcribe an Hyperbola, whofe con:
conjugate fhall pafs thro' the point C; and from the centre A, with the interval $A H$, defcribe a circle cutting that Hyperbola in the point H; then the projectile thrown in the direction of the right line $\boldsymbol{A} \boldsymbol{H}$ will fall upon the point K. Q.E.I. For the point H, becaufe of the given length $A H$, muft be fomewhere in the circumference of the defribed circle. Draw $C H$ meeting $A K$ and $K F$ in E and F; and becaufe $C H, M X$ are parallel, and $A C, A I$ equal, $A E$ will be equal to $A M$, and therefore alfo equal to $K N$. But $C E$ is to $A E$ as $F H$ to $K N$, and therefore $C E$ and $F H$ are equal. Therefore the point H falls upon the hyperbolic curve defribed with the afymptotes $A K, K F$, whofe conjugate paffes thro' the point C; and is therefore found in the common interfection of this hyperbolic curve and the circumference of the defrribed circle. O.E.D. It is to be obferved that this operation is the fame, whether the right line $A K N$ be parallel to the horizon, or inclined thereto in any angle ; and that from two interfections H, H, there arife two angles $N A H, N A H$; and that in mechanical pratice it is fufficient once to defcribe a circle, then to apply a ruler $C H$, of an indeterminate length, fo to the point C, that its part $F H$, intercepted bet ween the circle and the right line $F K$, may be equal to its part $C E$ placed between the point C and the right line $A K$.

What has been faid of Hyperbola's may be eafly applied to Parabola's. For if (Fig.8.) a Parabola be reprefented by $X A G K$, touched by a right line $X V$ in the vertex X; and the ordinates $I A, V G$ be as any powers $X I^{n}, X V^{n}$ of the abfciffa's $X I, X V$; draw $X T, G T, A H$, whereof let $X T$ be parallel to $V G$, and let $G T, A I$ touch the parabola in G and A : and a body projected from any place A, in the direction of the right line $A H$, with a due velocity, will defcribe this Parabola, if the denfity of the medium in

Sect. II. of Natural Philofophy. 43 each of the places G, be reciprocally as the tangent GT. In that cafe the velocity in G will be the fame as would caufe a body, moving in a non-refifting fpace, to defcribe a Conic Parabola, having G for its vertex, $V G$ produced downwards for its diameter, and $2 G T^{2}$ for its latus rectum. And the refinting $n n-n \times V G$
force in G will be to the force of gravity, as $G T$ to $\frac{2 n n-2 n}{n-2} V G$. Therefore if $N A K$ reprefent an horizontal line, and, both the denfity of the medium at A and the velocity with which the body is projected, remaining the fame, the angle $N A H$ be any how alter'd ; the lengths $A H, A I, H X$ will remain: and thence will be given the vertex X of the Parabola, and the pofition of the right line $X I$, and by taking $V G$ to $I A$ as $X V^{n}$ to $X I^{n}$, there will be given all the points G of the Parabola, thro' which the projettile will pafs.

SECTION III.

Of the Motions of Bodies which are refifted partly in the ratio of the Velocities, and partly in the duplicate of the fame ratio.

Proposition XI. Theorem VIII.

If a body be refifted partly in the ratio, and partly in the duplicate ratio of its veloci$t y$, and moves in a fimilar medium by its innate force only; and the times be taken in arithmetical progreflion: then quantities reciprocally proportional to the velocities, increafed by a certain given quantity, will be in geometrical progreffion. Pl. 3. Fig. I.
With the centre C, and the reCtangular afymptotes $C A D d$ and $C H$ defribe an Hyperbola $B E \subset$, and let $A B, D E$, de, be parallel to the afymptote $C H$. In the afymptote $C D$ let A, G be given points: And if the time be expounded by the hyperbolic area $A B E D$ uniformly increafing; I fay that the velocity may be exprefs'd by the length $D F$, whofe reciprocal $G D$ together with the given line $C G$, compofe the length $C D$ increafing in a geometrical progreffion.

For let the areola $D E e d$ be the leaft given increment of the time, and $D d$ will be reciprocally as $D E$, and therefore directly as $C D$. Therefore the decrement of $\frac{1}{G D}$, which (by Lem. 2. Book 2.) is $\frac{D d}{G D^{2}}$ will be alfo as $\frac{C D}{G D^{2}}$ or $\frac{C G+G D}{G D^{2}}$, that is, as $\frac{1}{G D}+\frac{C G}{G D^{2}}$. Therefore the time $A B E D$ uniformly increafing by the addition of the given particles EDde, it follows thatit $\frac{1}{G D}$ decreafes in the fame ratio with the velocity. For the decrement of the velocity is as the refiftance, that is, (by the fuppofition) as the fum of two quantities, whereof one is as the velocity, and the other as the fquare of the velocity ; and the decrement of $\frac{1}{G D}$ is as the fum of the quantities $\frac{I}{G D}$ and $\frac{C G}{G D^{2}}$, whereof the firft is $\frac{1}{G D}$ it felf, and the laft $\frac{C G}{G D^{2}}$ is as $\frac{1}{G D^{2}}$: therefore $\frac{1}{G D}$ is as the veloci$t y$, the decrements of both being analogous. And if the quantity $G D$, reciprocally proportional to $\frac{1}{G D}$, be augmented by the given quantity $C G$; the fum $C D$, the time $A B E D$ uniformly increafing, will increafe in a geometrical progreffion. O.E.D.
Cor. I. Therefore, if, having the points A and G given, the time be expounded by the hyperbolic area $A B E D$, the velocity may be expounded by $\frac{1}{G D}$ the reciprocal of $G D$.
COR. 2. And by taking $G A$ to $G D$ as the reciprocal of the velocity at the beginning, to the reciprocal
of the velocity at the end of any time $A B E D$, the point G will be found. And that point being found, the velocity may be found from any other time given.

Proposition XII. Theorem IX.

The fame things being suppofed, I say, that if the paces defcribed are taken in aritbmetical progreflon, the velocities augmented by a certain given quantity will be in geometrical progrefion. Pl. 3. Fig. 2.

In the afymptote $C D$ let there be given the point R, and erecting the perpendicular $R S$ meeting the Hy perbola in S, let the fpace defcribed be expounded by the hyperbolic area $R S E D$; and the velocity will be as the length $G D$, which, together with the given line $C G$, compofes a length $C D$ decreafing in a geometrical progreffion, while the fpace RSED increafes in an arithmetical progreffion.

For, becaufe the increment EDde of the fpace is given, the lineola $D d$, which is the decrement of $G D$, will be reciprocally as $E D$, and therefore directly as $C D$; that is, as the fum of the fame $G D$ and the given length CG. But the decrement of the velocity, in a time reciprocally proportional thereto, in which the given particle of fpace Dde E is defrribed, is as the refiffance and the time conjunctly, that is, directly as the fum of two quantities, whereof one is as the velocity, the other as the fquare of the velocity, and inverfely as the velocity; and therefore directly as the fum of two quantities, one of which is given, the other is as the velocity. Therefore the decremeat both of the velocity and the line $G D$, is as a given quantity and a decreafing quantity conjunctly; and, becaufe the decrements are analogous, the decreafing quantities will always

Sect. III. of Natural Pbilofophy.
47
always be analogous; viz. the velocity, and the line GD. O.E.D.

Cor. I. If the velocity be expounded by the length $G D$, the fpace defcribed will be as the hyperbolic area DESR.

Cor. 2. And if the point R be affumed any how; the point G will be found, by taking $G R$ to $G D$, as the velocity at the beginning to the velocity after any fpace $R S E D$ is defcribed. The point G being given, the fpace is given from the given velocity : and the contrary.

Cor. 3. Whence fince (by Prop. it.) the velocity is given from the given time, and (by this Prop.) the fpace is given from the given velocity; the fpace will be given from the given time : and the contrary.

Proposition XIII. Theorem X.

Suppofing that a body attracted downwards by an uniform gravity afcends or defcends in a right line; and that the fame is refifted, partly in the ratio of its velocity, and partly in the duplicate ratio thereof: I fay that, if right lines parallel to the diameters of a Circle and an Hyperbola be drawn thro the ends of the conjugate diameters, and the velocities be as fome fegments of thofe parallels drawn from a given point; the times will be as the fectors of the areas, cut off by right lines drawn from the centre to the ends of the fegments; and the contrary. Pl. 3. Fig. 3.
CASE i. Suppofe firft that the body is afcending; and from the centre D, with any femidiameter $D B$, defribe a quadrant $B E T F$ of a circle, and thro the
end B of the femidiameter $D B$ draw the indefinite line $B A P$, parallel to the femidiameter $D F$. In that line let there be given the point A, and take the fegment $A P$ proportional to the velocity. And fince one part of the refiftance is as the velocity, and another part as the fquare of the velocity ; let the whole refiftance be as $A P^{2}+2 B A P$. Join $D A, D P$ cutting the circle in E and T, and let the gravity be expounded by $D A^{2}$, fo that the gravity fhall be to the refiftance in P, as $D A^{2}$ to $A P^{2}-{ }^{2} B A P$; and the time of the whole afcent will be as the fector $E D T$ of the circle.

For draw $D V Q$, cutting off the moment $P Q$ of the velocity $A P$, and the moment $D T V$ of the fector $D E T$ anfwering to a given moment of time ; and that decrement $P Q$ of the velocity will be as the fum of the forces of gravity $D A^{2}$ and of refiftance $A P^{2}-1-2 B A P$, that is, (by 12 Prop. 2 Book Elem.) as $D P^{2}$. Then the arca $D P Q$, which is proportional to $P Q$, is as $D P^{2}$, and the area $D T V$, which is to the area $D P Q$ as. $D T^{2}$ to $D P^{2}$, is as the given quantity $D T^{2}$. Theretore the area $E D T$ decreafes uniformly according to the rate of the future time, by fubduction of given particles $D T V$, and is therefore proportional to the time of the whole afcent. O.E.D.

CASE 2. If the velocity in the afcent of the body be expounded by the length $A P$ as before, and the refiftance be made as $A P^{2}-1-2 B A P$, and if the force of gravity be lefs than can be expreffed by $D \boldsymbol{A}^{2}$; take $B D$ (Fig.4.) of fuch a length, that $A B^{2}-B D^{2}$ may be proportional to the gravity, and let $D F$ be perpendicular and equil to $D B$, and thro' the vertex F defcribe the Hyperbola FTVE, whofe conjugate femidiameters are $D B$ and $D F$, and which cuts $D A$ in E, and $D P, D Q$ in T and V; and the time of the whole afcent will be as the hyperbolic fector TDE.

For the decrement $P Q$ of the velocity produced in - given particle of time, is as the fum of the refiftance

Sect.III. of Natural Philofophy.
$A P^{2}+2 B A P$ and of the gravity $A B^{2}-B D^{2}$, that is, as $B P^{2}-B D^{2}$. But the area $D T V$ is to the area $D P Q$ as $D T$: to $D P^{2}$; and therefore, if $G T$ be drawn perpendicular to $D F$, as $G T^{2}$ or $G D^{2}$ $-D F^{2}$ to $B D^{2}$, and as $G D^{2}$ to $B P^{2}$, and, by divifion, as $D F^{2}$ to $B P^{2}-B D^{2}$. Therefore fince the area $D P Q$ is as $P Q$, that is, as $B P^{2}-B D^{2}$; the area $D T \widehat{V}$ will be as the given quantity $D F^{2}$. Therefore the area $E D T$ decreafes uniformly in each of the equal particles of time, by the fubduction of fo many given particles $D T V$, and therefore is proportional to the time. Q.E. D.
CASE 3. Let $A P$ be the velocity in the defcent of the body, and $A P^{2}-1-2 B A P$ the force of refiftance, and $B D^{2}-A B^{2}$ the force of gravity, the angle $D B A$ being a right one. And if with the centre D, and the principal vertex B, there be defcribed a rectangular Hyperbola $B E T V$ (Fig. 5.) cutting $D_{A,} D P$, and $D Q$ produced in E, T, and V; the fetor DET of this Hyperbola will be as the whole time of defcent.
For the increment $P Q$ of the velocity, and the area $D P Q$ proportional to it, is as the excefs of the gravity above the refiftance, that is, as $B D^{2}-A B^{2}$ - $2 B A P-A P^{2}$ or $B D^{2}-B P^{2}$. And the area $D T V$ is to the area $D P Q$, as $D T^{2}$ to $D P^{2}$; and therefore as $G T^{2}$ or $G D^{2}-B D^{2}$ to $B P^{2}$, and as $G D^{2}$ to $B D^{2}$, and, by divifion, as $B D^{2}$ to $B D^{2}$ $-B P^{2}$. Therefore fince the area $D P O$ is as $B D^{2}$ $-B P^{2}$, the area $D T V$ will be as the given quantity $B D^{2}$. Therefore the area $E D T$ increafes uniformly in the feveral equal particles of time by the addition of is many given particles DTV, and therefore is proportional to the time of the defcent. Q.E.D.
Cor. If with the centre D and the femidiameter D_{A} there be drawn thro' the vertex A an arc $A t$ fimilar to the $\operatorname{arc} E T$, and fimilarly fubtending the angle Vol. II. E
$A D T$: the velocity $A P$ will be to the velocity, which the body in the time EDT, in a non-refifting fpace, can lofe in its afcent, or acquire in its defcent, as the area of the triangle $D A P$ to the area of the fector DAt; and therefore is given from the time given. For the velocity in a non-refifting medium, is proportional to the time, and therefore to this fector; in a refifting medium it is as the triangle; and in both mediums, where it is leaft, it approaches to the ratio of equality, as the fector and triangle do.

Scholium.

Oie may demonftrate alfo that cafe in the afcent of the body, where the force of gravity is lefs than can be exprefs'd by $D A^{2}$ or $A B^{2}-\mid-B D^{2}$, and greater than can be exprefs'd by $A B^{2}-D B^{2}$, and muft be exprefs'd by $A B^{2}$. But I haften to other things.

Proposition XIV. Theorem XI.

The fame things being fuppofed, I fay, that the space defcribed in the afcent or defcent, is as the difference of the area by which the time is exprefs'd, and of fome oiber area which is augmented or diminighed in an aritbmetical progreffion; if the forces compounded of the refiftance and the gravity be taken in a geometrical progrelfion. Pl. 3. Fig. 5, 6, 7 .

Take $A C$ (in the three laft figures) proportional to the gravity, and $A K$ to the refiftance. But take them on the fame fide of the point A, if the body is defcending, otherwife on the contrary. Erect $A b$, which make to $D B$ as $D B^{2}$ to $4 B A C$: and to the rectangular afymptotes $C K, C H$, defcribe the Hyper-

Sect. III. of Natural Philosophy. is bola $b N$, and erecting $K N$ perpendicular to $C K$, the area $A b N K$ will be augmented or diminithed in an arithmetical progreffion, while the forces $C K$ are taken in a geometrical progreffion. I fay therefore that the diftance of the body from its greatef altitude is as the excels of the area $A b N K$ above the area $D E T$.
For fine $A K$ is as the refiftance, that is, as $A P^{2}$ $-2 B A P$; affume any given quantity Z , and put $A K$ equal to $\frac{A P^{2}-\hat{-}^{2} B A P}{\mathrm{Z}}$; then (by Lem. 2. of this Book) the moment $K L$ of $A K$ will be equal to $\frac{2 A P Q-2 B A \times P Q}{\mathrm{Z}}$ or $\frac{2 B P Q}{\mathrm{Z}}$, and the momont $K L O N$ of the area $A b N K$, will be equal to. $\frac{2 B P Q \times L O}{\mathrm{Z}}$ or $\frac{B P Q \times B D^{3}}{2 \mathrm{Z} \times C K \times A B}$.
Case i. Now if the body afcends, and the gravity be as $A B^{2}-1-B D^{2}, B E T$, (in Fig. 5.) being a circle, the line $A C$, which is proportional to the gravity, will be $\frac{A B^{2}+B D^{2}}{\mathrm{Z}}$, and $D P^{2}$ or $A P^{2}-2 B A P$ $+A B^{2}-1-B D^{2}$ will be $A K \times \mathrm{Z}-1 C \times \mathrm{Z}$ or $C K \times \mathrm{Z}$; and therefore the area $D T V$ will be to the area $D P Q$ ${ }^{2 s} D T^{2}$ or $D B^{2}$ to $C K \times Z$.
CASE 2. If the body afcends, and the gravity be as $A B^{2}-B D^{2}$, the line $A C$ (in Fig. 6.) will be $A B^{2}-B D^{2}$

Z and $D T^{2}$ will be to $D P^{2}$ as $D F^{2}$ or
$D B^{2}$ to $B P^{2}-B D^{2}$ or $A P^{2}+2 B A P-1-A B^{2}-$ ${ }^{B D^{2}}$, that is, to $A K \times \mathrm{Z}-A C \times \mathrm{Z}$ or $C K \times \mathrm{Z}$. And therefore the area $D T V$ will be to the area $D P Q$ as $D B^{2}$ to $C K \times \mathrm{Z}$.
Case 3. And by the fame reafoning, if the body defends, and therefore the gravity is as $B D^{2}-A B^{2}$, and the line $A G$ (in Fig.7.) becomes equal to

$$
E_{2}^{\circ}
$$

$D P Q$ as $D B^{2}$ to $C K \times \mathrm{Z}$: as above.
Since therefore thefe areas are always in this ratio ; if for the area $D T V$, by which the moment of the time, always tqual to itfelf, is expreffed, there be put any determinate rectangle, as $B D \times m$, the area $D P Q$, that is, $\frac{1}{2} B D \times P Q$, will be to $B D \times m$ as $C K \times \mathrm{Z}$ to $B D^{2}$. And thence $P Q \times B D^{3}$ becomes equal to $2 B D \times m \times C K \times \mathrm{Z}$, and the moment $K L O N$ of the area $A b N K$, found before, becomes $\frac{B P \times B D \times m}{A B}$. From the area $D E T$ fubduct its moment $D T V$ or $B D \times m$, and there will remain $\frac{A P \times B D \times m}{A B}$. Therefore the difference of the moments, that is, the moment of the difference of the areas is equal to $\frac{A P \times B D \times m}{A B}$; and therefore (becaule of the given quantity $\frac{B D \times m}{A} \frac{B}{B}$) as the velocity $A P$; that is, as the moment of the fpace which the body defcribes in its afcent or defcent. And therefore the difference of the arcas, and that fpace, increafing or decreafing by proportional moments, and beginning together or vanifhing together, are proportional. O.E. D.

Cor. If the length, which arifes by applying the area $D E T$ to the line $B D$, be called M; and another length V be taken in that ratio to the length M, which the line $D A$ has to the line $D E$: the fpace which a body, in a reffifting medium, defcribes in its whole afcent or defcent, will be to the fpace, which a body, in a non-refifting medium, falling from reft can defcribe in the fame time, as the difference of the aforefaid areas to $\frac{B D \times V^{2}}{A B}$: and therefore is given from

Sect. III. of Natural Pbilofophy:
the time given. For the face in a non-refifting medium is in a duplicate ratio of the time, or as V^{2}; and, becaufe $B D$ and $A B$ are given, as $\frac{B D \times V^{2}}{A B}$. This area is equal to the area $\frac{D A^{2} \times B D \times M^{2}}{D E^{2} \times A B}$, and the moment of M is m; and therefore the moment of this area is $\frac{D A^{2} \times B D \times 2 M \times m}{D E^{2} \times A B}$. But this moment is to the moment of the difference of the aforefaid areas $D E T$ and $A b N K$, viz. to $\frac{A P \times B D \times m}{A B}$, as $\frac{D A^{2} \times B D \times M}{D E^{2}}$ to $\frac{1}{2} B D \times A P$, or as $\frac{D A^{2}}{D E^{2}}$ into $D E T$ to $D A P$; and therefore, when the areas $D E T$ and $D A P$ are leaft, in the ratio of equality. Therefore the area $\frac{B D \times V^{2}}{A B}$ and the difference of the areas $D E T$ and $A b N K$, when all thefe areas are leaft, have equal moments; and are therefore equal. Therefore fince the velocities, and therefore alfo the fpaces in both mediums defcribed together, in the beginning of the deficent, or the end of the afcent, approach to equality, and therefore are then one to another as the area $\frac{B D \times V^{2}}{A B}$, and the difference of the areas $D E T$ and $A b N K$; and moreover fince the fpace, in a non-refifting medium, is perpetually as $B D \times V^{2}$
$\frac{A B}{A B}$, and the fpace, in a refifting medium, is perpetually as the difference of the areas $D E T$ and $A b N K$: it neceffarily follows, that the fpaces, in both mediums, defcribed in any equal times, are one to another as that area $\frac{B D \times V^{2}}{A B}$, and the difference of the areas $D E T$ and $A 6 N K$. O.E D.

SCHOLIUM.

The refiftance of fpharical bodies in fluids arifes partly from the tenacity, partly from the attrition, and partly from the denfity of the medium. And that part of the refiftance, which arifes from the denfity of the fluid, is, as I faid, in a duplicate ratio of the velocity, the other part, which arifes from the tenacity of the fluid, is uniform, or as the moment of the time : and thercfore we might now proceed to the motion of bodies, which are refifted partly by an uniform force, or in the ratio of the moments of the time, and partly in the duplicate ratio of the velocity. But it is fufficient to have cleared the way to this fpeculation in the $8^{\text {th }}$ and $9^{\text {th }}$ Prop. foregoing, and their Corollaries. For in thofe Propofitions, inftead of the uniform refiftance made to an afcending body arifing from its gravity, one may fubflitute the uniform refiftance which arifes from the tenacity of the medium, when the body moves by its vis ingita alone; and when the body afcends in a right line, add this uniform refiftance to the force of gravity, and fubduct it when the body defcends in a right line. One might alfo go on to the motion of bodies which are refifted in part uniformly, in part in the ratio of the velocity, and in part in the duplicate ratio of the fame velocity. And I have opened a way to this in the $13^{\text {th }}$ and $14^{\text {th }}$ Prop. foregoing, in which the uniform reffiftance arifing from the tenacity of the medium, may be fubftituted for the force of gravity, or be compounded with it as before. But I haften to other things.

SECTION IV.

Of the circular motion of bodies in reffing mediums.

Lemma III.

Let PQR be a spiral cutting all the radii SP , $S \mathrm{Q}, \mathrm{SR}$, doc. in equal angles. Draw the right line PT touching the spiral in any point P , and cutting the radius SQ in T ; draw PO, QO perpendicular to the firal, and meeting in O , and join SO . I fay, that if the points P and Q approach and coincide, the angle P SO will become a right angle, and the ultimate ratio of the rectangle $\mathrm{T} \times 2 \mathrm{PS}$ to PQ^{2} will be the ratio of equality. Pl.4. Fig. .

For from the right angles $O P Q, O Q R$, subduct the equal angles $S P Q, S Q R$, and there will remain the equal angles $O P S, O Q S$. Therefore a circle which paffes thro' the points O, S, P, will pats alto tho' the point O. Let the points P and O coincide, and this circle will touch the spiral in the place of coincidence $P Q$, and will therefore cut the right line $O P$ perpendicularly. Therefore $O P$ will become a dameter of this circle, and the angle $O S P$, being in a femicircle, becomes a right one. O. E.D.

$$
{ }^{\circ}{ }_{4}
$$

Draw $Q D, S E$ perpendicular to $O P$, and the ultimate ratio's of the lines will be as follows; $T Q$ to $P D$ as $T S$ or $P S$ to $P E$, or $2 P O$ to $2 P S$; and $P D$ to $P Q$ as $P Q$ to $2 P O$; and, ex cequo perterbatí, $T Q$ to $P Q$ as $P Q$ to $2 P S$. Whence $P Q^{2}$ becomes equal to $T O \times 2 P S$. $Q . E . D$.

Proposition XV. Thforem XII.

 If the denfity of a medium in each place thereof be reciprocally as the diftance of the places. from an immoveable centre, and the centripetal force be in the duplicate ratio of the denfity: I fay, that a body' may revolie in a Spiral which cuts all the radii drawen from that centre in a given angle. . Pl. 4. Fig. 2.Suppofe every thing to be as in the foregoing Lemma, and produce $S Q$ to V, fo that $S V$ may be equal to $S P$. In any time let a body, in a refifting medium, defcribe the leaft arc $P Q$, and in double the time, the leaft arc $P R$; and the decrements of thofe arcs arifing from the refiftance, or their differences from the arcs which would be deferibed in a non-refifting medium in the fame times, will be to each other, as the fquares of the times in which they are generated: Therefore the decrement of the arc $P Q$ is the fourth part of the decrement of the arc $P R$. Whence alfo if the area $Q S x$ be tuken equal to the area $P S Q$, the decrement of the $\operatorname{arc} P Q$ will be equal to half the lineola $R r$; and therefore the force of refiltance and the centripetal force are to each other as the lineola's $\frac{1}{2} \mathrm{Rr}$ and $T Q$ which they generate in the fame time. Becaufe the centripetal force with which the body is urged in P, is reciprocally as $S P^{2}$, and (by Lem. 10. Book 1.) the lineola $T Q$, which is generated by that force, is in a ra-

Seat.IV. of Natural Pbilofopby. 57 tio compounded of the ratio of this force and the duplicate ratio of the time in which the arc $P Q$ is defribed, (for in this cafe I neglect the refiftance, as being infinitely lefs than the centripetal force,) it follows, that $T Q \times S P^{2}$, that is, (by the laft Lemma) $\frac{1}{2} P Q^{2}$ $\times S P$, will be in a duplicate ratio of the time, and therefore the time is as $P Q \times \sqrt{ } S P$; and the velocity of the body, with which the arc $P Q$ is defribed in that time, as $\frac{P Q}{P Q \times \sqrt{ } S P}$ or $\frac{1}{\sqrt{S P}}$, that is, in the fubduplicate ratio of $S P$ reciprocally. And by a like reafoning, the velocity with which the arc $Q R$ is defcribed, is in the fubduplicate ratio of $S Q$ reciprocally. Now thofe arcs $P Q$ and $Q R$ are as the defcribing velocities to each other; that is, in the fubduplicate ratio of $S Q$ to $S P$, or as $S O$ to $\sqrt{S P \times S Q}$; and, becaule of the equal angles $S \widehat{P} Q, S O r$, and the equal areas $P S O, Q S r$, the arc $P O$ is to the arc $O r$ as $S Q$ to $S P$. Take the differences of the proportional confequents, and the arc $P Q$ will be to the arc $R r$ as $S Q$ to $S P-\sqrt{S P \times S Q}$, or $\frac{1}{2} V Q$. For the points P and Q coinciding, the ultimate ratio of $S P-\sqrt{S P \times S Q}$ to $\frac{1}{2} V Q$ is the ratio of equality. Becaufe the decrement of the arc $P Q$ arifing from the refiftance, or its double $R r$, is as the refiftance and the fquare of the time conjunctly ; the refiftance will be as $\frac{R r}{P Q^{2} \times S P}$: But $P Q$ was to $R r$, as $S O$ to $\frac{1}{2} V Q$, and thence $\frac{R r}{P Q^{2} \times S P}$ becomes as $\frac{\frac{1}{2} \overline{V Q}}{P Q \times S P \times S Q}$ or as $\frac{\frac{1}{2} O S}{O P \times S P^{2}}$. For the points P and 2 coinciding, $S P$ and $S Q$ coincide alfo, and the angle $P V Q$ becomes a right one; and, becaufe of the fimilar triangles $P V Q$, PSO, $P Q$ becomes to $\frac{x}{2} V \mathcal{Q}$ as $O P$ to $\frac{1}{2} O S$. Therefore $\frac{O S}{O P \times S P^{2}}$ is as the refiftance, that is, in the ratio of
the denfity of the medium in P and the duplicate ratio of the velocity conjunetly. Subduat the duplicare ratio of the velocity, namely the ratio $\frac{1}{S P}$, and there will remain the denfity of the medium in P as $\frac{O S}{O P \times S P}$ Let the fpiral be given, and, becaufe of the given ratio of $O S$ to $O P$, the denfity of the medium in P will be as $\frac{1}{S P}$. Therefore in a medium whofe denfity is reciprocally as $S P$ the diftance from the centre, a bod y will revolve in this fpiral. Q.E.D.

Cor. I. The velocity in any place P, is always the fame wherewith a body in a non-refifting medium with the fame centripetal force would revolve in a circle, at the fame diftance $S P$ from the centre.

Cor.2. The denfity of the medium, if the difance $S P$ be given, is as $\frac{O S}{O P}$, but if that diftance is not given, as $\frac{O S}{O Y \times S P}$. And thence a firal may be fitted to any denfity of the medium.

Cor. 3 . The force of the refiftance in any place P, is to the centripetal force in the fame place as $\frac{1}{2} O S$ to $O P$. For thofe forces are to each other as $\frac{1}{2} R r$ and $T Q$ or as $\frac{\frac{1}{4} V Q \times P Q}{S^{\prime} Q}$ and $\frac{\frac{1}{2} P Q^{2}}{S P}$, that is, as $\frac{1}{2} V Q$ and $P Q$, or $\frac{ \pm}{2} S$ and $O P$. The fpiral therefore being given, there is given the proportion of the refiftance to the centripetal force; and vice verfa, from that proportion given the firal is given.

Cor. 4. Therefore the body can't revolve in this fpiral, except where the force of refiftance is lefs than half the centripetal force. Let the refiftance be made equal to half the centripetal force, and the fpiral will coincide with the right line $P S$, and in that right line

Sect.IV. of Natural Pbilofopby.

the body will defcend to the centre with a velocity, that is to the velocity, with which it was proved before in the cafe of the Parabold, (Theor. 10. Book I.) the defcent would be made in a non-refifting medium. in the fubduplicate ratio of unity to the number two. And the times of the defcent will be here reciprocally as the velocities, and therefore given.

Cor.g. And becaufe at equal diftances from the centre, the velocity is the fame in the fpiral $P Q R$ as it is in the right line $S P$, and the length of the tpiral is to the length of the right line $P S$, in a given ratio, namely in the ratio of $O P$ to $O S$; the time of the defrent in the fpiral will be to the time of the defcent in the right line $S P$ in the fame given ratio, and therefore given.
Cor. 6 . If from the centre S with any two given intervals, two circles are defcribed ; and thefe circles remaining. the angle which the fpiral makes with the radius $P S$ be any how changed; the number of revolutions which the body can compleat in the fpace between the circumferences of thofe circles, going round in the fpiral from one circumference to another, will be as $\frac{P \dot{S}}{O s}$, or as the tangent of the angle which the firal makes with the radius $P S$; and the time of the fame revolutions will be as $\frac{O P}{O S}$, that is, as the fecant of the fame angle, or reciprocally as the denfity of the medium.
Cor.7. If a body, in a medium whofe denfity is reciprocally as the diftances of places from the centre, revolves in any curve $A E B$ (Fig.3.) about that centre, and cuts the firft radius $A S$ in the fame angle in B as it did before in A, and that with a velocity, that fhall be to its firft velocity in A reciprocally in a fubduplicate ratio of the diftances from the centre (that is, as $A S$ to a mean proportional between $A S$ and $B S$) that
that body will continue to defribe innumerable fimilar revolutions $B F C, C G D, \& C$. and by its interfections will diftinguifh the radius $A S$ into parts $A S, B S$, $C S, D S$, \&c. that are continually proportional. Bue the times of the revolutions will be as the perimeters of the orbits $A E B, B F C, C G D, \& c$. directly, and the velocities at the beginnings A, B, C of thofe orbits, inverfely; that is, as $A S^{\frac{3}{2}}, B S^{\frac{3}{2}}, C S^{\frac{3}{2}}$. And the whole time in which the body wiltarrive at the centre, will be to the time of the firft revolution, as the fum of all the continued proportionals $A S^{\frac{3}{2}}, B S^{\frac{3}{2}}, C S^{\frac{3}{2}}$, going on ad infinitum, to the firft term $A S^{\frac{3}{2}}$; that is, as the firfterm $A S^{\frac{2}{2}}$ to the difference of the two firft $A S^{\frac{3}{2}}-B S^{\frac{1}{2}}$, or as $\frac{2}{3} A S$ to $A B$ very nearly. Whence the whole time may be eafily found.

Cor.8. From hence alfo may be deduced, near enough, the motions of bodies in mediums whofe denfity is either uniform or obferves any other affigned law. From the centre S, with intervals $S A, S B, S C$, \&c. continually proportional, defcribe as many circles; and fuppofe the time of the revolutions between the perimeters of any two of thofe circles, in the medium whereof we treated, to be to the time of the revolutions between the fame in the medium propofed, as the mean denfity of the propofed medium between thofe circles, to the mean denfity of the medium whereof we treated, between the fame circles, nearly : And that the fecant of the angle in which the firal above determined, in the medium whereof we treated, cuts the radius $A S$, is in the fame ratio to the fecant of the angle in which the new fpiral, in the propofed medium, cuts the fame radius: And alfo that the number of all the revolutions between the fame two circles is nearly as the tangents of thofe angles. If this be done every where between every two circles, the motion

Sect. IV. of Natural Philofopby:
will be continued thro' all the circles. And by this means one may without difficulty conceive at what rate and in what time bodies ought to revolve in any regular medium.

Cor.9. And altho thefe motions becoming excentrical thould be performed in fpirals approaching to an oval figure ; yet conceiving the feveral revolutions of thofe fpirals to be at the fame diftances from each other, and to approach to the centre by the fame degrees as the fpiral above defcribed, we may alfo underftand how the motions of bodies may be performed in fpirals of that kind.

Proposition XVI. Theorem XIII.

 If the denfity of the medium in each of the pla: ces be reciprocally as the diftance of the places from the immoveable centre, and the centripetal force be reciprocally as any power of the fame diftance, I fay, that the body may revolve in a Spiral interfecting all the radii drawn from that centre in a given angle. Pl. 4. Fig. 2.This is demonftrated in the fame manner as the foregoing propofition. For if the centripetal force in P be reciprocally as any power $S P^{n+1}$ of the diftance $S P$ whofe index is $n+1$: it will be collected as above, that the time in which the body defribes any arc $P Q$. will be as $P Q \times P S^{\frac{1}{2 n} n}$; and the refiftance in P as $\frac{R r}{P Q^{2} \times S P^{n}}$, or as $\frac{\overline{1-\frac{1}{2} n} \times V Q}{P O \times S P^{n} \times S Q}$, and therefore
$\frac{1-\frac{1}{2} n \times O S}{O P \times S P^{n+1}}$, that is, (becaufe $\frac{1}{\frac{1}{2} n \times O S}$
$O P$ is a given given quantity) reciprocally as $S P^{u+1}$. And therefore, fince the velocity is reciprocally as $S P^{\frac{1}{2} n}$, the denfity in P will be reciprocally as $S P$.

Cor. i. The refiftance is to the centripetal force as $\overline{1-\frac{1}{2} n} \times O S$ to $O P$.

Cor.2. If the centripetal force be reciprocally as $\mathcal{S}^{p^{3}}, \mathrm{i}-\frac{1}{2} n$ will be $=0$; and therefore the refiftance and denfity of the medium will be nothing, as in Prop.9. Book i.

Cor. 3. If the centripetal force be reciprocally as any power of the radius $S P$, whofe index is greater than the number 3 , the affirmative refiftance will be changed into a negative.

Scholium.

This Propofition and the former which relate to mediums of unequal denfity, are to be underftood of the motion of bodies that are fo fmall, that the greater denfity of the medium on one fide of the body, above that on the other, is not to be confider'd. I fuppofe alfo the refiftance, cateris paribus, to be proportional to its denfity. Whence in mediums whofe force of refiftance is not as the denfity, the denfity muft be fo much augmented or diminifhed, that either the excefs of the refiftance may be taken away, or the defect fupplied.

Proposition XVII. Problem IV.

To find the centripetal force and the refifing force of the medium, by which a body, the law of the velocity being given, fhall revolve in a given Spiral. Pl.4. Fig. 4.

Let that firal be $P Q R$. From the velocity, with which the body goes over the very fmall $\operatorname{arc} P Q$, the time

Sect. IV. of Natural Pbilooophy: 63 time will be given ; and from the altitude $T O$, which is as the centripetal force, and the fquare of the time, that force will be given. Then from the difference $R S r$, of the areas $P S Q$ and $Q S R$ defrribed in equal particles of time, the retardation of the body will be given; and from the retardation will be found the refifting force and denfity of the medium.

Proposition XVIII. Problem V.

The law of centripetal force being given, to find the denjity of the modium in each of the places thereof', by which a body may defcribe a given Jpiral.

From the centripetal force the velocity in each place mult be found ; then from the retardation of the velocity, the denfity of the medium is found, as in the foregoing Propofition.

But I have explain'd the method of managing thefe Problems in the tenth Propofition and fecond Lemma of this Book; and will no longer detain the reader in thefe perplex'd difquifitions. I fhall now add fome things relating to the forces of progreffive bodies, and to the denfity and refiftance of thofe mediums in which the motions hitherto treated of, and thofe akin to them, are performed.

\%

SECTION V.

Of the density and compreffion of fluids; and of Hydroftatics.

The Definition of a Fluid.
A fluid is any body whose parts yield to any force impreffed on it, and, by yielding, are eafily moved among themselves.

Proposition XIX. Theorem XIV.

All the parts of a homogeneous and unmoved fluid included in any unmoved velfel, and compreffed on every fides, (Setting afide the confederation of condenfation, gravity, and all centripetal forces) will be equally preffed on every gide, and remain in their places without any motion arising from that preffure. Plo. Fig. 5.

Case i. Let a fluid be included in the fpharical veffel $A B C$ and uniformly compreffed on every fides : I fay, that no part of it will be moved by that preffuse. For if any part, as D, be moved, all fuch parts at the fame diffance from the centre on every fides, mut neceffarily be moved at the fame time by a like motion; because the preffure of them all is fimilar and equal; and all other motion is excluded that does not arife from

Sect. V. of Natural Pbilofophy.

 that preffure. But if thefe parts come all of them nearer to the centre, the fluid muft be condenfed towards the centre, contrary to the fuppofition. If they recede from it, the fluid muft be condenfed powards the circumference; which is alfo contrary to the tuppofition. Neither can they move in any one direction retaining their diftance from the centre, becaufe for the fame reafon they may move in a contrary dircition; but the fame part cannot be moved contrary ways at the fame time. Therefore no part of the fluid will be moved from its place. O.E.D.Case 2. I fay now, that all the fpherrical parts of this fluid are equally preffed on every fide. For let $E F$ be a fpherical part of the fluid; if this be not preffed equally on every fide, augment the leffer preffure till it be preffed equally on every fide; and its parts (by Cafe I.) will remain in their places. But before the increafe of the preffure, they would remain in their places', (by Cafe I.) and by the addition of a new preffure, they will be moved, by the definition of a fluid, from thofe places. Now thefe two conclufions contradict each other. Therefore it was falfe to lay, that the fphere $E F$ was not preffed equally on every fide. Q E.D.
Case 3: I fay befides, that different fpherical parts have equal preffures. For the contiguous fpherical parts prefs each other mutually and equally in the point of contact, (by Law 3.). But (by Cafe 2.) they are prefled on every fide with the fame force. Therefore any two fpherical parts not contiguous, fince an intermediate fphxrical part scan touch both, will be preffed with the fame force. O.E.D.
Case 4. I fay now, that all the parts of the fluid are every where preffed equally. For any two parts may be touched by fpherical parts in ariy points whatever; and there they will equally prefs thofe fpharical Vol. II.

F
parts,
parts, (by Cafe 3.) and are, reciprocally, equally preffed by them, (by Law 3.) O.E.D.

Case 5 . Since therefore any part $G H I$ of the fluid is incloted by the reft of the fluid as in a veffel, and is equally preffed on every fide; and alfo its parts equally prefs one ano:her, and are at reft among themfelves; it is manifeft that all the parts of any fluid as $G H I$, which is preffed equally on every fide, do prefs each other mutually and equally, and are at reft among themfelves. O.E.D.

Case $\frac{6}{}$. Therefore if that fluid be included in a veffel of a yielding fubftance, or that is not rigid, and be not equally preffed on every fide; the fame will give way to a ftronger preffure, by the definition of fluidity.

Case 7. And therefore in an inflexible or rigid veffel, a fluid will not fuftain a ftronger preffure on one fide than on the other, but will give way to it, and that in a moment of time; becaufe the rigid fide of the veffel does not follow the yielding liquor. But the fluid, by thus yielding, will prefs againft the oppofite fide, and fo the preflure will tend on every fide to equality. And becaufe the fluid, as foon as it endeavours to recede from the part that is moft preffed, is withftood by the refiffance of the veffel on the oppofite fide; the preffure will on every fide be reduced to equality, in a moment of time, without any local motion: and from thence the parts of the fluid, (by Cafe 5.) will prefs each other mutually and equally, and be at reft among themfelves. O.E.D.

Cor. Whence neither will a motion of the parts of the fluid among themfelves, be changed by a preffure communicated to the external fuperficies, except fo far as either the figure of the fuperficies may be fomewhere alter'd, or that all the parts of the fluid, by preffing one another more intenfely or remifsly, may gide with more or lefs difficulty among themfelves.

Pro:

Sect. V. of Natural Pbitoophy.

Proposition XX. Theorem XV.

If all the parts of a Spharical fuid, homogeneous at equal diffances from the centre, lying on afpharical concentric bottom, gravitate towards the centre of the whole; the bottom will fuftain the weight of a cylinder, whole bafe is equal to the fuperficies of the bottom, and whofe altitude is the fame with that of the incumbent fuid. Pl.4. Fig. 6.

Let $D H M$ be the fuperficies of the bottom, and $A E I$ the upper fuperficies of the fluid. Let the fluid be diftinguifhed into concentric orbs of equal thicknefs, by the innumerable fphærical fuperficies $B F K, C G L$; and conceive the force of gravity to act only in the upper fuperficies of every orb, and the actions to be equal on the equal parts of all the fuperficies. Therefore the upper fuperficies $A E$ is preffed by the fingle force of its own gravity, by which all the parts of the upper orb, and the fecond fuperficies $B F K$ will, (by Prop. 19.) according to its meafure, be equally preffed. The fecond fuperficies $B F K$ is preffed likewife by the force of its own gravity, which added to the former force, makes the preffure double. The third fuperficies $C G L$ is, according to its meafure, acted on by this preffure and the force of its own gravity befides, which makes its preffure triple. And in like manner the fourth fuperficies receives a quadruple preffure, the fifth fuperficies a quintuple, and fo on. Therefore the preffure acting on every fuperficies, is not as the folid quantity of the incumbent fluid, but as the number of the orbs reaching to the upper furface of the fluid; and is equal to the gravity of the loweft orb multiplied by the number of orbs: that is, to the gravity of a folid F_{2} whofe
whofe ultimate ratio to the cylinder abovementioned (when the number of the orbs is increafed and their thicknefs diminifhed ad infinitum, fo that the action of gravity from the loweft fuperficies to the uppermoft may become continued) is the ratio of equality. Therefore the loweft fuperficies fuftains the weight of the cylinder above-determined. Q.E.D. And by a like reafoning the Propofition will be evident, where the gravity of the fluid decreafes in any affigned ratio of the diftance from the centre, and alfo where the fluid is more rare above and denfer below. O.E.D.
Cor. i. Therefore the bottom is not preffed by the whole weight of the incumbent fluid, but only fuftains that part of it which is defcribed in the Propofition; the reft of the weight being fuftained archwife by the sphrrical figure of the fluid.

Cor.2. The quantity of the preffure is the fame always at equal diftances from the centre, whether the fuperficies preffed be parallel to the horizon, or perpendicular, or oblique; or whether the fluid, continued upwards from the compreffed fuperficies, rifes perpendicularly in a recilinear direction, or creeps obliquely thro' crooked cavities and canals, whether thofe paffages be regtilar or irregular, wide or narrow. That the preffure is not alter'd by any of thefe circumftances, may be collected by applying the demonftration of this Theorem to the feveral cafes of fluids.
Cor.3. From the fame demonftration it may alfo be collected, (by Prop. 19.) that the parts of an heavy fluid acquire no motion among themfelves, by the preffure of the incumbent weight; except that motion which arifes from condenfation.

Cor. 4. And therefore if another body of the fame fpecific gravity, incapable of condenfation, be immerfed in this fluid, it will acquire no motion by the preffure of the incumbent weight : it will neither defrend, nor afcend, nor change its figure. If it be fpharical,

Plate N. lil.II. R. 68.

fpherical, it will remain fo notwithftanding the preffure ; if it be fquare, it will remain fquare : and that whether it be foft, or fluid; whether it fwims freely in the fluid, or lies at the bottom. For any internal part of a fluid is in the fame flate with the fubmerfed body; and the cafe of all fubmerfed bodies that have the fame magnitude, figure, and Specific gravity, is alike. If a fubmerfed body retaining its weight, hould diffolve and put on the form of a fluid, this body, if before it would have afcended, defcended, or from any preffure affume a new figure, would now likewife afcend, defcend, or pút on a new figure ; and that becaufe its gravity and the other caufes of its motion remain. But (by Cafe 5 . Prop. 19.) it would now be at reft and retain its figure. Therefore alfo in the former cafe.
Cor. 5. Therefore a body that is (pecifically heavier than a fluid contiguous to it, will fink, and that which is fpecifically lighter will afcend, and attain fo much motion and change of figure, as that excefs or defect of gravity is able to produce. For that excefs or defect is the fame thing as an impulfe, by which a body, otherwife in equilibrio with the parts of the fluid, is acted on; and may be compared with the excefs or defect of a weight in one of the fcales of a balance.

Cor. 6 . Therefore bodies placed in fluids have a twofold gravity ; the one true and abfolute, the orher apparent, vulgar and comparative. Abfolute gravity is the whole force with which the body tends downwards : relative and vulgar gravity is the excefs of gravity with which the body tends downwards more than the ambient fluid. By the firt kind of gravity, the parts of all fluids and bodies gravitate in their proper places; and therefore their weights taken together, compofe the weight of the whole. For the whole taken together is heavy, as may be experienced in veffels full of liquor ; and the weight of the whole is equal to the weights of all the parts, and is therefore compofed of
them. By the other kind of gravity bodies do not gravitate in their places, that is, compared with one another, they do not preponderate, but hindering one another's endeavours to defcend, remain in their proper places, as if they were not heavy. Thofe things which are in the air and do not preponderate, are commonly looked on as not heavy. Thofe which do preponderate are commonly reckoned heavy, in as much as they are not fuftained by the weight of the air. The common weights are nothing elfe but the excefs of the true weights above the weight of the air. Hence alfo vulgarly thofe things are called light, which are lefs heavy ; and by yielding to the preponderating air, mount upwards. But thefe are only comparatively light, and not truly fo, becaufe they defcend in vacuo. Thus in water, bodies which, by their greater or lefs gravity, defcend or afcend, are comparatively and apparently heavy or light, and their comparative and apparent gravity or levity is the excefs or defect by which their true gravity either exceeds the gravity of the water or is exceeded by it. But thofe things which neither by preponderating defcend, nor, by yielding to the preponderating fluid, afcend, altho' by their true weight they do increafe the weight of the whole, yet comparatively, and in the fenfe of the vulgar, they do not gravitate in the water. For thefe cafes are alike demonftrated.

Cor. 7. Thefe things which have been demonftrated concerning gravity, take place in any other centripetal forces.

Cor. 8. Therefore if the medium in which any body moves be acted on either by its own gravity, or by any other centripetal force, and the body be urged more powerfully by the fame force; the difference of the forces is that very motive force, which in the foregoing Propofitions I have confider'd as a centripetal ferce. But if the body be more lightly urg'd by that

Sect. V. of Natural Pbilofophy.
that force, the difference of the forces becomes a centrifugal force, and is to be confider'd as fuch.

Cor.9. But fince fluids by preffing the included bodies do not change their external figures, it appears alfo, (by Cor. Prop. 19.) that they will not change the fituation of their internal parts in relation to one another ; and therefore if animals were immerfed therein, and that all fenfation did arife from the motion of their parts; the fluid will neither hurt the immerfed bodies, nor excite any fenfation, unlefs fo far as thofe bodies may be condenfed by the compreffion. And the cafe is the fame of any fyftem of bodies encompaffed with a compreffing fluid. All the parts of the fyftem will be agitated with the fame motions, as if they were placed in a vacuum, and would only retain their comparative gravity; unlefs fo far as the fluid may fomewhat refift their motions, or be requifite to conglutinate them by compreffion.

Proposition XXI. Theorem XVI. Let the denfity of any fuid be proportional to the compreffion, and its parts be attracted downwards by a centripetal force reciprocally proportional to the diftances from the centre: I fay, that, if thofe diftances be taken continually proportional, the denfities of the fluid at the fame diftances will be alfo continually proportional. Pl. s. Fig. i.

Let $A T V$ denote the fphxrical bottom of the fluid, S the centre, $S A, S B, S C, S D, S E, S F, \& c$. diftances rontinually proportional. Erect the perpendiculars $A H$, $B I, C K, D L, E M, F N, \& c$. which fhall be as the denfities of the medium in the places A, B, C, D, E, F; and the fpecific gravities in thofe places will be
as $\frac{A H}{A S}, \frac{B I}{B S}, \frac{C K}{C S}$, \&c. or, which is all one, as $\frac{A H}{A B}, \frac{B I}{B C}, \frac{C K}{C D}, \& c$. Suppofe firft thefe gravities to be uniformly continued from A to B, from B to $C_{?}$ from C to $D, \& c$. the decrements in the points B, C, D, \&c. being taken by fteps. And thefe gravities drawn into the altitudes $A B, B C, C D, \& c$. will give the preffures $A H, B I, C K$, \&c. by which the bottom $A T V$ is acted on, (by Theor. I5.) Therefore the particle A fuftains all the preffures $A H, B I, C K, D L$, \&c. proceeding in infinitum ; and the particie B fuftains the preflures of all but the firft $A H$; and the particle C all but the two firf $A H, B I$; and fo on: and therefore the denfity $A H$ of the firlt particle A is to the denfity $B I$ of the fecond particle B as the fum of all $A H-1-B I+C K+D L$, in infinitum, to the fum of all $B I-1-C K-1-D L$, \&c. And $B I$ the denfity of the fecond particle B is to $C K$ the denfity of the third C, as the fum of all $B I-C K+D L$, \&c. to the fum of all $C K-1-D L$, \&c. Therefore thefe fums are proportional to their differences $A H, B I, C K$, \& c . and therefore continually proportional, (by Lem. I. of this Book) and therefore the differences $A H, B I, C K, \& c$. proportional to the fums, are alfo continually proportional. Wherefore fince the denfities in the places $A, B, C, \& c$. are as $A H$, $B I, C K, \& c$. they will alfo be continually proportional. Proceed intermiffively, and, ex aquo, at the diftances $S A$, $S C, S E$ continually proportional, the denfities $A H, C K$, $E M$ will be continually proportional. And by the fame reafoning, at any diftances $S A, S D, S G$ continually proportional, the denfities $A H, D L, G O$ will be continually proportional. Let now the points A, B, C, D, E, \&c. coincide, fo that the progreffion of the feecific gravities from the bottom A to the top of the fluid may be made continual ; and at any diftances $S A, S D$,

Sea. V. of Natural Philofopby: 73
$S G$ continually proportional, the denfities $A H, D L, G Q$ being all along continually proportional, will ftill remain continually proportional. Q.E.D.

Cor Hence if the denfity of the fluid in two plat ces as A and E be given, its denfity in any other place Q may be collected. With the centre S, and the rectangular afymptotes $S Q, S X$ defribe (Fig. 2.) an Hy perbola cutting the perpendiculars $A H, E M, O T$ in a, e, and q, as alfo the perpendiculars $H X, M \widehat{Y}, T Z$ let fall upon the afymptote $S X$ in h, m, and t. Make the area $r_{m t} Z$ to the given area $Y_{m b} b$ as the given area E eq O to the given area $E \subset a A$; and the line $Z t$ produced will cut off the line $Q T$ proportional to the denfity. For if the lines $S A, S E, S Q$ are continually proportional, the areas E eq O, E ea A will be equal, and thence the areas $\mathrm{r}_{m t} \mathrm{Z}, \mathrm{Xhm}_{\mathrm{X}} \mathrm{X}$ proportional to them will be alfo equal, and the lines $S X, S \Upsilon, S Z$, that is, $A H, E M, O T$ continually proportional as they ought to be. And if the lines $S A, S E, S Q$ obtain any bother order in the feries of continued proportionals, the lines $A H, E M, Q T$, becaufe of the proportional hyperbolic areas, will obtain the fame order in another feries of quantities continually proportional.

Proposition XXII. Theorem XVII: Let the denfity of any fuid be proportional to the compreffion, and its parts be attracted downwards by a gravitation reciprocally proportional to the jquares of the diftances from the centre: I fay, that, if the diftances be taken in barmonic progreffion, the denfities of the fuid at thofe diftances will be in a geometrical progreffion. Pl. s. Fig. 3.
Let S denote the centre, and $S A, S B, S C, S D$, $S E$, the diftances in Geomerrical progreffion.' Erect as the denfities of the fluid in the places A, B, C, D, E, \&c. and the fpecific gravities thereof in thofe places will be as $\frac{A H}{S A^{2}}, \frac{B I}{S B^{2}}, \frac{C K}{S C^{2}}$, \&c. Suppofe thefe gravities to be uniformly continued, the firft from A to B, the fecond from B to C, the third from C to D, \&c. And thefe drawn into the altitudes $A B, B C, C D$, $D E, \& c$. or, which is the fame thing, into the diftances $S A, S B, S C$, \&c. proportional to thofe altitudes, will give $\frac{A H}{S^{\prime} A}, \frac{B I}{S B}, \frac{C K}{S C}$, \&c. the exponents of the preffures. Therefore fince the denfities are as the fums of thofe preffures, the differences $A H-B I$, $B I-C K, \& c$. of the denfities will be as the differences of thofe fums $\frac{A H}{S A}, \frac{B I}{S B}, \frac{C K}{S C}, \& c$. With the centre S, and the afymptotes $S A, S x$, defcribe any Hyperbola, cutting the perpendiculars $A H, B I, C K, \& c$. in $a, b, c, \& c$. and the perpendiculars $H t, I u, K_{2 \nu}$ let fall upon the afymptote $S x$, in h, i, k; and the differences of the denfities $t u, u v, \& c$. will be as $\frac{A H}{S A}, \frac{B I}{\overline{S B}}$, $\& c$. And the rectangles $t u \times t b, n \nu \times w i$, \&c. or $t p, n q, \& c$. as $\frac{A H \times t h}{S A}, \frac{B I \times u i}{S B}, \& c$. that is, as $A a, B b, \& c$. For, by the nature of the Hyperbola, $S A$ is to $A H$ or $S t$, as th to $A a$, and therefore $\frac{A H \times t h}{S A}$ is equal to $A a$. And, by a like reafoning, $\frac{B I \times u i}{S B}$ is equal to $B b, \& c$. But $A a, B b, C c, \& c$. are continually proportional, and therefore proportional to their differences $A a-B b, B b-C c, \& c$. and therefore the rectangles $t p, u q$, \&c. are proportional

Sect. V. of Natural Pbilofophy:
to thofe differences; as alfo the fums of the rectangles $t p-1-n q$ or $t p-1-n q-\mid \nu r$ to the fums of the differences $A a-C c$ or $A a-D d$. Suppofe feveral of thefe terms, and the fum of all the differences, as $A a-F f$, will be proportional to the fum of all the rectangles, as $z t h \mathrm{n}$. Increafe the number of terms, and diminifh the diftances of the points $A, B, C, \& c$. in infinitum, and thofe rectangles will become equal to the hyperbolic area $z t h n$, and therefore the difference Aa-Ff is proportional to this area. Take now any diftances as $S A, S D, S F$ in harmonic progreffion, and the differences $A a-D d, D d-F f$ will be equal ; and therefore the areas $t h l x, x \ln z$ proportional to thofe differences will be equal among themfelves, and the denfities $S t, S x, S z$, that is, $A H, D L, F N$ continually proportional. O.E.D.

Cor.2. Hence if any two denfities of the fluid, as $A H$ and $B I$ be given, the area thiu, anfwering to their difference $t u$ will be given; and thence the denfity $F N$ will be found at any height $S F$, by taking the area $t h n z$ to that given area t hin as the difference $A a-F f$ to the difference $A a-B b$.

Scholium.

By a like reafoning, it may be proved, that if the gravity of the particles of a fluid be diminifhed in a triplicate ratio of the diftances from the centre; and the reciprocals of the fquares of the diftances $S A$, $S B, S C, \& c$. (namely $\frac{S A^{3}}{S^{\prime} A^{2}}, \frac{S A^{3}}{S B^{2}}, \frac{S A^{3}}{S C^{2}}$) be taken in an Arithmetical progreflion, the denfities $A H, B I$, $C K$, \&c. will be in a Geometrical progreffion. And if the gravity be diminifhed in a quadruplicate ratio of the diftances, and the reciprocals of the cubes of the diftances (as $\frac{S A^{4}}{S A^{3}}, \frac{S A^{4}}{S B^{3}}, \frac{S A^{+}}{S C^{3}}$ \&c.) be taken in Arith-
'Arithmetical progreffion, the denfities $A H, B I, C K$, \&c. will be in Geometrical progreffion. And fo in infinitum. Again, if the gravity of the particles of the fluid be the fame at all diftances, and the diftances be in Arithmetical progreffion, the denfities will be in a Geometrical progreffion, as Dr. Halley has found. If the gravity be as the diftance, and the fquares of the diftances be in Arithmetical progreffion, the denfities will be in Geometrical progreffion. And fo ininfinitum. Thefe things will be fo, when the denfity of the fluid condenfed by compreffion is as the force of compreffion, or, which is the fame thing, when the fpace poffeffed by the fluid is reciprocally as this force. Other laws of condenfation may be fuppofed, as that the cube of the compreffing force may be as the biquadrate of the denfity; or the triplicate ratio of the force the fame with the quadruplicate ratio of the denfity: In which cafe, if the gravity be reciprocally as the fquare of the diftance from the centre, the denfity will be reciprocally as the cube of the diftance. Suppofe that the cube of the compreffing force be as the quadrato-cube of the denfity; and if the gravity be reciprocally as the fquare of the diftance, the denfity will be reciprocally in a fefquiplicate ratio of the diftance. Suppofe the compreffing force to be in a duplicate ratio of the denfiry, and the gravity reciprocally in a duplicate ratio of the diftance, and the denfity will be reciprocally as the diftance. To run over all the cafes that might be offer'd, would be tedious. But as to our own air, this is certain from experiment, that its denfity is either accurately or very nearly at leaft as the compreffing force ; and therefore the denfity of the air in the atmofphere of the earth is as the weight of the whole incumbent air, that is, as the height of the mercury in the barometer.

Pro=

Proposition XXIII. Theorem XVIII.

 If a fuid be compofed of particles mutually fy: ing each other, and the denfity be as the comprefion, the centrifugal forces of the particles will be reciprocally proportional to the difances of their centres. And vice verfa, particles flying each other with forces that are reciprocally proportional to the diftances of their centres, compofe an elafic fuid, wabofe denfity is as the comprefion. Pl.s. Fig. 4.Let the fluid be fuppofed to be included in a cubic fpace $A C E$, and then to be reduced by compreffion into a leffer cubic fpace ace; and the diffances of the particles retaining a like fituation with refpeet to each other in both the fpaces, will be as the fides $A B, a b$ of the cubes ; and the denfities of the mediums will be reciprocally as the containing fpaces $A B^{3}, a b^{3}$. In the plane fide of the greater cube $A B C D$ take the fquare $D P$ equal to the plane fide $d b$ of the leffer cube : and, by the fuppofition, the preflure with which the fquare $D P$ urges the inclofed fluid, will be to the preffure with which that fquare $d b$ urges the inclofed fluid, as the denfities of the mediums are to each other, that is, ${ }^{23} a b^{3}$ to $A B^{3}$. But the preflure with which the fquare $D B$ urges the included fluid, is to the preflure with which the fquare $D P$ urges the fame fluid, as the fquare $D B$ to the fquare $D P$, that is, as $A B^{2}$ to $a b^{2}$. Therefore, ex aquo, the preflure with which the fquare $D B$ urges the fluid is to the preflure with which the fquare $d b$ urges the fluid ; as $a b$ to $A B$. Let the planes $F G H$, $f g b$, be drawn thro' the middles of the two cubes, and divide the fluid into two parts. Thefe parts will a prefs which they are themfelves preffed by the planes $A C$, $a c$, that is, in the proportion of $a b$ to $A B$: and therefore the centrifugal forces by which thefe preffures are fuftained, are in the fame ratio. The number of the particles being equal, and the fituation alike, in both cubes, the forces which all the particles exert, according to the planes $F G H, f g h$, upon all, are as the forces which each exerts on each. Therefore the forces which each exerts on each according to the plane $F G H$ in the greater cube, are to the forces which each exerts on each according to the plane fgh in the leffer cube, as $a b$ to $A B$, that is, reciprocally as the diftances of the particles from each other. O.E.D.

And, vice ver a a, if the forces of the fingle particles are reciprocally as the diftances, that is, reciprocally as the fides of the cubes $A B, a b$; the fums of the forces will be in the fame ratio, and the preflures of the fides $D B, d b$ as the fums of the forces; and the preffure of the fquare $D P$ to the preffure of the fide $D B$ as $a b^{2}$ to $A B^{2}$. And, ex aguo, the preffure of the fquare $D P$ to the preffure of the fide $d b$ as $a b^{3}$ to $A B^{3}$, that is, the force of compreffion in the one to the force of compreffion in the other, as the denfity in the former to the denfity in the latter. Q.E.D.

Scholivm.

By a like reafoning, if the centrifugal forces of the particles are reciprocally in the duplicate ratio of the diftances between the centres, the cubes of the compreffing forces will be as the biquadrates of the denfities. If the centrifugal forces be reciprocally in the triplicate or quadruplicate ratio of the diftances, the cubes of the comprefling forces will be as the quadratocubes, or cubo-cubes of the denfities. And univerfally, if D be put for the diftance, and E for the den-

Sct. V. of Natural Pbilofophy:
fity of the compreffed fluid, and the centrifugal forces be reciprocally as any power D^{n} of the diftance, whofe index is the number n; the compreffing forces will be as the cube roots of the power E^{n+2}, whofe index is the number $n+2$: and the contrary. All thefe things are to be underftood of particles whofe centrifugal forces terminate in thofe particles that are next them, or are diffufed not much further. We have an example of this in magnetical bodies. Their attrative virtue is terminated nearly in bodies of their own kind that are next them. The virtue of the magnet is contraeted by the interpofition of an iron plate; and is almoft terminated at it. For bodies further off are not attracted by the magnet fo much as by the iron plate. If in this manner particles repel others of their own kind that lie next them, but do not exert their virtue on the more remote, particles of this kind will compofe fuch fluids as are treated of in this propofition. If the virtue of any particle diffufe itfelf every way in infinitum, there will be required a greater force to produce an equal condenfation of a greater quantity of the fluid. But whether elaftic fluids do really confift of particles fo repelling each other, is a phyfical queftion. We have here demonftrated mathematically the property of fluids confifting of particles of this kind, that hence philofophers may take occafion to difcufs that queftion.

SEC.

SECTIONVI.

Of the motion and refiftance of funependulous bodies.

Proposition XXIV: Theorem XIX.

 The quantities of matter in funependulous bodies, whofe centres of ofcillation are equally diftant from the centre of fulpenfion, are in a ratio compounded of the ratio of the weights and the duplicate ratio of the times of the ofcillations in vacuo.For the velocity, which a given force can generate in a given matter in a given time, is as the ferce and the time directly, and the matter inverfely. The greater the force or the time is, or the lefs the matter, the greater velocity will be generated. This is manifeft from the fecond law of motion. Now if pendulums are of the fame length, the motive forces in places equally diftant from the perpendicular are as the weights: and therefore if two bodies by ofcillating defcribe equal arcs, and thofe arcs are divided into equal parts; fince the times in which the bodies defrribe each of the correfpondent parts of the arcs are as the times of the whole of fillations, the velocities in the correfpondent parts of
the ofcillations will be to each other, as the motive forces and the whole times of the ofcillations direetly, and the quantities of matter reciprocally: and therefore the quantities of matter are as the forces and the times of the ofcillations directly and the velocities reciprocally. But the velocities reciprocally are as the times, and therefore the times directly and the velocities reciprocally are as the fquares of the times; and therefore the quantities of matter are as the motive forces and the fquares of the times, that is, as the weights and the fquares of the times. O.E.D.
COR. I. Therefore if the times are equal, the quantities of matter in each of the bodies are as the weights.
Cor.2. If the weights are equal, the quantities of matter will be as the fquares of the times.
Cor. 3. If the quantities of matter are equal, the weights will be reciprocally as the fquares of the times.
Cor. 4. Whence fince the fquares of the times, cateris paribus, are as the lengths of the pendulums; therefore if both the times and quantities of matter are equal, the weights will be as the lengths of the pendulums.
Cor. 5. And univerfally, the quantity of matter in the pendulous body is as the weight and the fquare of the time directly, and the length of the pendulum inverfely.
Cor. 6. But in a non-refifting medium, the quantity of matter in the pendulous body is as the comparative weight and the fquare of the time directly, and the length of the pendulum inverfely. For the comparative weight is the motive force of the body in any heavy medium, as was fhewn above; and therefore does the fame thing in fuch a non-refifting medium, as the abfolute weight does in a vacuum.
Cor. 7. And hence appears a method both of comparing bodies one among another, as to the quantity of
Vol. II.
G
matrex
matter in each; and of comparing the weights of the fame body in different places, to know the variation of its gravity. And by experiments made with the greateft accuracy, I have always found the quantity of matter in bodies to be proportional to their weight.

Proposition XXV. Theorem XX.

Funipendulous bodics that are, in any medium, refifted in the ratio of the moments of time, and funipendulous bodies that move in a nonrefifting medium of the fame ppecific gravity, perform their ofcillations in a cycloid in the fame time, and defcribe proportional parts of arcs together. Pl. s. Fig. 5.

Let $A B$ be an arc of a cycloid, which a body D, by vibrating in a non-refifting medium thall defcribe in any time. Bifect that arc in C, fo that C may be the loweft point thereof; and the accelerative force with which the body is urged in any place D or d or E will be as the length of the arc $C D$ or $C d$ or $C E$. Let that force be expreffed by that fame arc; and fince the refiftance is as the moment of the time, and therefore given, let it be exprefs'd by the given part $C O$ of the cycloidal arc, and take the arc $O d$ in the fame ratio to the arc $C D$ that the arc $O B$ has to the $\operatorname{arc} C B:$ and the force with which the body in d is urged in a refifting medium, being the excels of the force $C d$ above the reffiftance $C O$, will be expreffed by the arc $O d$, and will therefore be to the force with which the body D is urged in a non-refifting medium in the place D, as the arc $O d$ to the arc $C D$; and therefore alfo in the place B, as the $\operatorname{arc} O B$ to the arc $C B$. Therefore if two bodies D, d go from the place B, and are urged by thefe forces ; fince the forces at the beginning are as the

Scet. VI. of Natural Pbilofophy.
$\operatorname{arcs} C B$ and $O B$, the firft velocities and arcs firft defcribed will be in the fame ratio. Let thofe arcs be $B D$ and $B d$, and the remaining arcs $C D, O d$, will be in the fame ratio. Therefore the forces, being proportional to thofe arcs $C D, O d$, will remain in the fame ratio as at the beginning, and therefore the bodies will continue deferibing together arcs in the fame ratio. Therefore the forces and velocities and the remaining arcs $C D, O d$, will be always as the whole arcs $C B, O B$, and therefore thofe remaining arcs will be defcribed together. Therefore the two bodies D and d will arrive together at the places C and O; that which moves in the non-refifting medium, at the place C, and the other, in the refifting medium, at the place 0 . Now fince the velocities in C and O are as the ares $C B, O B$, the arcs which the bodies defcribe when they go farther, will be in the fame ratio. Let thofe arcs be $C E$ and $O e$. The force with which the body D in a non-refifting medium is retarded in E is as $C E$, and the force with which the body d in the refifting medium is retarded in e, is as the fum of the force $C e$ and the refiftance $C O$, that is, as $O e$; and therefore the forces with which the bodies are retarded, are as the arcs $C B, O B$, proportional to the arcs $C E, O_{\epsilon}$; and therefore the velocities, retarded in that given ratio, remain in the fame given ratio. Therefore the velocities and the arcs defrribed with thofe velocities, are always to each other in that given ratio of the arcs $C B$ and $O B$; and therefore if the entire arcs $A B, a B$ are taken in the fame ratio, the bodies D and d will defcribe thofe arcs together, and in the places A and a vill lofe all their motion together. Therefore the whole ofcillations are ifochronal, or are performed in equal times; and any parts of the arcs, as $B D, B d$, or $B E, B e$, that are defrribed together, are proportional to the whole $\operatorname{arcs} B A, B a$. O.E.D.

Cor. Therefore the fwifteft motion in a refifting medium does not fall upon the loweft point C, but is found in that point O, in which the whole arc defcribed $B a$ is bifected. And the body proceeding from thence to a, is retarded at the fame rate with which it was accelerated before in its deffent from B to O.

Proposition XXVI. Theorem XXI.

 Funipendulous bodies, that are refffed in the ratio of the velocity, have their ofcillations in a cycloid ifochronal.For if $t w o$ bodies, equally diftant from their centres of fufpenfion, defcribe, in ofcillating, unequal arcs, and the velocities in the correfpondent parts of the arcs be to each other as the whole arcs; the refiffances, proportional to the velocities, will be alfo to each other as the fame arcs. Therefore if thefe refiftances be fubducted from or added to the motive forces arifing from gravity which are as the fame arcs, the differences or fums will be to each other in the fame ratio of the arcs: and fince the increments and decrements of the velocities are as thefe differences or fums, the velocities will be always as the whole arcs : Therefore if the velocities are in any one cafe as the whole arcs, they will remain always in the fame ratio. But at the beginning of the motion, when the bodies begin to defcend and defcribe thofe arcs, the forces, which at that time are proportional to the arcs, will generate velocities proportional to the arcs. Therefore the velocities will be always as the whole arcs to be defcribed, and therefore thofe arcs will be defribed in the fame time. O.E.D.

Proposition XXVII. Theorem XXII.

If funipendulous bodies are refifted in the duplicate ratio of their velocities, the differences between the times of the of cillations in a refifting medium, and the times of the of cillations in a non-reffting medium of the fame Specific gravity, will be proportional to the arcs defcribed in ofcillating nearly.

For let equal pendulums in a refifting medium defribe the unequal arcs A, B; and the refiffance of the body in the arc \mathbf{A} will be to the refiftance of the body in the correfpondent part of the arc B in the duplicate ratio of the velocities, that is, as A A to B B nearly. If the refiftance in the arc B were to the refiftance in the arc \mathbf{A} as $\mathbf{A B}$ to $\mathbf{A} \mathbf{A}$; the times in the arcs \mathbf{A} and B would be equal (by the laft Prop.) Therefore the refiftance $A A$ in the arc A, or $A B$ in the arc B, caufes the excefs of the time in the arc \mathbf{A} above the time in a non-refifting medium ; and the refiftance B B caufes the excefs of the time in the arc B above the time in a non-refifting medium. But thofe exceffes are as the efficient forces A B and B B nearly, that is, as the arcs A and B. O.E.D.
Cor. I. Hence from the times of the ofcillations in unequal arcs in a refifting medium, may be known the times of the ofcillations in a non-refifting medium of the fame fpecific gravity. For the difference of the times will be to the excefs of the time in the leffer arc above the time in a non-refifting medium, as the difference of the arcs to the leffer arc.
Cor. 2. The fhorter offillations are more ifochronal, and very fhort ones are performed nearly in the

$$
\text { G }_{3} \text { fame }
$$

fame times as in a non-refiffing medium. But the times of thofe which are performed in greater arcs are a little greater, becaufe the refiftance in the defcent of the body, by which the time is prolonged, is greater, in proportion to the length defribed in the defcent, than the refiftance in the fubfequent afcent, by which the time is contracted. But the time of the ofcillations, both fhort and long, feems to be prolonged in fome meafure by the motion of the medium. For retarded bodies are refifted fomewhat lefs, in proportion to the velocity, and accelerated bodies fomewhat more, than thofe that proceed uniformly forwards; becaufe the medium, by the motion it has reccived from the bodies, going forwards the fame way with them, is more agitated in the former cafe, and lefs in the latter; and fo confpires more or lefs with the bodies moved. Therefore it refifts the pendulums in their deficent more, and in their afcent lefs, than in proportion to the velocity; and thefe two caufes concurring prolong the time.

Proposition XXVIII. Theorem XXIII.

If a funipendulous body, ofcillating in a cycloid, be rejifted in the ratio of the moments of the time, its refiftance will be to the force of gravity as the excefs of the arc defcribed. in the whole defeent abave the arc defcribed in the fibjequent afcent, to twice the lengtb of the pendulum. Pl.s. Fig. s.

Let $B C$ reprefent the arc defcribed in the defcent; C_{a} the arc defribed in the afcent, and A a the difference of the arcs: andihings remaining as they were conftructed and demonftrated in Prop. 25. the force with which the ofcillating

Sect. VI. of Natural Pbilofophy.
ofcillating body is urged in any place D, will be to the force of refiftance as the arc $C D$ to the arc $C O$, which is half of that difference Aa. Therefore the force with which the ofcillating body is urged at the beginning or the higheft point of the cycloid, that is, the force of gravity, will be to the refiftance as the arc of the cycloid, between that higheft point and loweft point C, is to the arc CO; that is, (doubling thofe arcs) as the whole cycloidal are, or twice the length of the pendulum, to the are Aa. O.E.D.

Proposition XXIX. Problem VI.

Suppofing that a body ofcillating in a cycloid is rejifled in a duplicate ratio of the velocity: to find the refiftance in each place. Pl. s. Fig. 6.

Let $B a$ be an arc defcribed in one entire ofcillation, C the loweft point of the cycloid, and $C Z$ half the whole cycloidal arc, equal to the length of the pendulum; and let it be required to find the refiftance of the body in any place D. Cut the indefinite right line $O Q$ in the points O, S, P, O, fo that (erccting the perpendiculars $O K, S T, P I, O E$, and with the centre O, and the afymptotes $O K, O Q$ defcribing the hyperbola $T I G E$ cutting the perpendiculars $S T, P I, Q E$ in T, I and E, and thro' the point I drawing $K F$, parallel to the afymptote $O Q$, meeting the afymptote $O K$ in K, and the perpendiculars $S T$ and $Q E$ in L and F) the hyperbolic area $P I E Q$ may be to the hyperbolic area PITS as the arc $\widehat{B C}$, defcribed in the defcent of the body, to the arc Ca defcribed in the afcent ; and that the area $I E F$ may be to the area $I L T$ as $O Q$ to $O S$. Then with the perpendicular $M N$ cut off the hyperbolic area $P I N M$, and let that area be to the hyperbolic area PIEQ as the arc $C Z$ to the are ${ }_{B C}^{\text {are }}$

For fince the forces arifing from gravity with which the body is urged in the places Z, B, D, a, are as the arcs $C Z, C B, C D, C a$, and thofe arcs are as the areas PINM, PIEQ, PIGR, PITS; let thofe areas be the exponents both of the arcs and of the forces refpectively. Let $D d$ be a very fmall fpace defcribed by the body in its defcent; and let it be expreffed by the very fmall area $R G g r$ comprehended between the parallels $R G, r g$; and produce $r g$ to b, fo that $G H h g$, and $R G g r$ may be the contemporaneous decrements of the areas IGH, PIGR. And the increment GHhg $\frac{R r}{O Q} I E F$, or $R r \times H G-\frac{R r}{O Q} I E F$, of the area $\frac{O R}{O Q} I E F-I G H$ will be to the decrement $R G g r$, or $R r \times R G$, of the area $P I G R$, as $H G-\frac{I E F}{O Q}$ to $R G$; and therefore as $O R \times H G-\frac{O R}{O Q} I E F$ to $O R \times G R$ or $O P \times P I$, that is (becaufe of the equal quantities $O R \times H G, O R \times H R-O R \times G R$, ORHK-OPIK, PIHR and PIGR-|IGH) as $P I G R-I G H-\frac{O R}{O Q} I E F$ to $O P I K$. Therefore if the area $\frac{O R}{O Q} I E F-I G H$ be called Y , and $R G g r$ the decrement of the area $P I G R$ be given, the increment of the area Y will be as $P I G R-\mathrm{Y}$.

Then

Then if V reprefent the force arifing from the gravity, proportional to the arc $C D$ to be defcribed, by which the body is acted upon in D, and R be put for the refiftance; $\mathrm{V}-\mathrm{R}$ will be the whole force with which the body is urged in D. Therefore the increment of the velocity is as $V-R$ and the particle of time in which it is generated conjunctly. But the velocity it felf is as the contemporaneous increment of the fpace defcribed directly and the fame particle of time inverfely. Therefore, fince the refiftance is, by the fuppofition, as the fquare of the velocity, the increment of the refiftance will (by Lem. 2.) be as the velocity and the increment of the velocity conjunctly. that is, as the moment of the face and $\mathrm{V}-\mathrm{R}$ conjunctly; and therefore, if the moment of the face be given, as $\mathrm{V}-\mathrm{R}$; that is, if for the force V we put its exponent $P I G R$, and the refiftance R be exprefled by any other area Z , as $P I G R-\mathrm{Z}$.
Therefore the area PIGR uniformly decreafing by the fubduction of given moments, the area Y increafes in proportion of $P I G R-Y$, and the area Z in proportion of PIGR-Z. And therefore if the areas \mathbf{Y} and Z begin together, and at the beginning are equal, thefe, by the addition of equal moments, will continue to be equal ; and in like manner decreafing by equal moments will van: h together. And, vice verfa, if they together begin and vanifh, they will have equal moments and be always equal: and that, beenufe if the refiffance \mathbf{Z} be augmented, the velocity together with the arc Ca, defcribed in the afcent of the body, will be diminifhed; and the point in which all the motion together with the refiftance ceafes, coming nearer to the point C, the refiftance vanifhes fooner than the area Y. And the contrary will happen when the refiftance is diminifhed.

Now the area \mathbf{Z} begins and ends where the refiftance is nothing, that is, at the beginning of the motion where the arc $C D$ is equal to the arc $C B$, and the right
line $R G$ falls upon the right line $O E$; and at the end of the motion where the arc $C D$ is equal to the are $C a$, and $R G$ falls upon the right line ST. And the area Y or $\frac{O R}{O Q} I E F-I G H$ begins and ends alro where the refiltance is nothing, and thercfore where $\frac{O R}{O Q}$ ftruction) where the right line $R G$ falls fucceffively upon the right lines $Q E$ and $S T$. Therefore thofe areas begin and vanin togecher, and are therefore always equal. Therefore the area $\frac{O R}{O O} I E F-I G H$ is equal to the area Z, by which the refiftance is expreffed, and therefore is to the area PINM by which the gravity is expreffed as the reffifance to the gravity. Q.E.D.

Cor. x. Therefore the refiftance in the loweft place C is to the force of gravity, as the area $\frac{O P}{O Q} I E F$ to the area $P I N M$.

Cor. 2. But it becomes greateft, where the area PIHR is to the area IEF as $O R$ to $O O$. For in that cafe its moment (that is, PIGR-Y) becomes nothing.

Cor. 3. Hence alfo may be known the velocity in each place: as being in the fubduplicate ratio of the refiftance, and at the beginning of the motion equal to the velocity of the body ofcillating in the fame cycloid without any refiftance.

However, by reafon of the difficulty of the calculation by which the refiftance and the velocity are found by this Propofition, we have thought fit to fub: join the Propofition following.

Proposition XXX. Theorem XXIV.

If a right line a B (PI.6. Fig. r.) be equal to the arc of a cycloid which an ofcillating body defcribes, and at each of its points D the perpendiculars DK be erected, which fhall be to the length of the pendulum as the refiftance of the body in the correfponding points of the arc to the force of gravity: I fay, that the difference between the arc defcribed in the whole defcent and the arc defcribed in the whole fubsequent afcent drawn into half the fum of the fame arcs, will be equal to the area BK a which all thofe perpendiculars take up.

Let the are of the cycloid, defcribed in one entire ofillation, be expreffed by the right line a B, equal to it , and the arc which would have been defcribed in vacuo, by the length $A B$. Bifect $A B$ in C, and the point C will reprefent the loweft point of the cycloid, and $C D$ will be as the force arifing from gravity, with which the body in D is urged in the direction of the tangent of the cycloid, and will have the fame ratio :o the length of the pendulum as the force in D has to the force of gravity. Let that force therefore be expreffed by that length $C D$, and the force of gravity by the length of the pendulum, and if in $D E$ you take D_{K} in the fame ratio to the length of the pendulum as the refiffance has to the gravity, $D K$, will be the exponent of the refiffance. ${ }^{-1}$ From the $c \in n t r e C$ with the interval $C A$ or $C B$ defribe a femi circle $B E \subset A$. Let the body defcribe, in the leaft time, the fpace $D d$, and ereeting the perpendiculars $D E$, de, meeting the circumference in E and ε, they will be as the velocities
which the body defcending in vacho from the point B would acquire in the places D and d. This appears by Prop. 52. Book 1. Let therefore thefe velocities be expreffed by thofe perpendiculars $D E$, de; and let $D F$ be the velocity which it acquires in D by falling from B in the refifting medium. And if from the centre C with the interval $C F$ we deferibe the circle $F f M$ meeting the right lines de and $A B$ in f and M, then M will be the place to which it would thenceforward, without farther refiffance, afcend, and $d f$ the velocity it would acquire in d. Whence alfo if $F g$ reprefent the moment of the velocity which the body D, in defcribing the leaft pace $D d$, lofes by the refiftance of the medium; and $C N$ be taken equal to $C g$: then will N be the place to which the body, if it met no farther refiftance, would thenceforward afcend, and $M N$ will be the decrement of the afcent arifing from the lofs of that velocity. Draw Fm perpendicular to $d f$, and the decrement $F g$ of the velocity $D F$ generated by the refiftance $D K$ will be to the increment $f m$ of the fame velocity generated by the force $C D$, as the generating force $D K$ to the generating force $C D$. But becaufe of the fimilar triangles $F m f, F h g, F D C$, $f m$ is to $F m$ or $D d$ as $C D$ to $D F$; and, ex equo, $F g$ to $D d$ as $D K$ to $D F$. Alfo $F b$ is to $F g$ as $D F$ to $C F$; and, ex aquo perturbate, $F b$ or $M N$ to $D d$ as $D K$ to $C F$ or $C M$; and therefore the fum of all the $M N \times C M$ will be equal to the fum of all the $D d \times D K$. At the moveable point M fuppofe always 2 rectangular ordinate erected equal to the indeterminate $C M$, which by a continual motion is drawn into the whole length $A a$; and the trapezium defcribed by that motion, or its equal, the rectangle $A a \times \frac{1}{2} a B$, will be equal to the fum of all the $M N \times C M$, and therefore to the fum of all the $D d \times D K$, that is, to the area BKVTa. O.E.D.

Seat. VI. of Natural Philofophy: 93
Cor. Heace from the law of refiftance and the difference $A a$ of the arcs $C a, C B$ may be colletted the proportion of the refiftance to the gravity nearly.

For if the refiflance $D K$ be uniform, the figure $B K T a$ will be a regangle under $B a$ and $D K$; and thence the rectangle under $\frac{1}{2} B a$ and $A a$ will be equal to the rectangle under $B a$ and $D K$, and $D K$ will be equal to $\frac{1}{2} A a$. Wherefore fince $D K$ is the exponent of the refiftance, and the length of the pendulum the exponent of the gravity, the refiftance will be to the gravity as $\frac{1}{2} \mathrm{Aa}$ to the length of the pendulum; altogether as in Prop. 28. is demonftrated.
If the refiftance be as the velocity, the figure BKTa will be nearly an ellipfis. For if a body, in a nonrefifting medium, by one entire öfcillation, fhould defrribe the length $B A$, the velocity in any place D would be as the ordinate $D E$ of the circle defcribed on the diameter $A B$. Therefore fince $B a$ in the refifting medium, and $B A$ in the non-refifting one, are defcribed nearly in the fame times; and therefore the velocities in each of the points of $B a$, are to the velocities in the correfpondent points of the length $B A$ nearly as $B A$ is to $B A$; the velocity in the point D in the refifting medium will be as the ordinate of the circle or ellipfis defrribed upon the diameter $B a$; and therefore the figure $B K V T a$ will be nearly an ellipfis. Since the refiftance is fuppofed proportional to the velocity, let $0 V$ be the exponent of the refiftance in the middle point 0 ; and an ellipfis $B R V S$ a defcribed with the centre 0 , and the femiaxes $O B, O V$ will be nearly equal to the figure $B K V T a$, and to its equal the rectangle $A a \times B O$. Therefore $A a \times B O$ is to $O V \times B O$ as the area of this ellipfis to $O V \times B O$; that is, $A a$ is to $O V$ as the area of the femicircle to the fquare of the radius, or as 11 to 7 nearly; and therefore $\frac{7}{T} A a$ is to the length of the pendulum, as the refiftance of the ofcillating body in O to its gravity.

Now if the refiftance $D . K$ be in the duplicate ratio of the velocity, the figure $B K V T a$ will be almoft a Parabola having V for its vertex and $O V$ for its axis, and therefore will be nearly equal to the rectangle under $\frac{2}{3} B a$ and $O V$. Therefore the rectangle under $\frac{2}{2} B a$ and $A a$ is equal to the rectangle $\frac{2}{3} B a \times O V$, and therefore $O V$ is equal to $\$ A a$: and therefore the refiftance in O made to the olcillating body is to its gravity as ${ }^{2} A$ a to the length of the pendulum.

And I take thefe conclufions to be accurate enough for practical ufes. For fince an Ellipfis or Parabola $B R V S a$ falls in with the figure BKV'Ta in the middie point V, that figure, if greater towards the part $B R V$ or $V S$ a than the other, is lefs towards the contrary part, and is therefore nearly equal to it.

Proposition XXXI. Theorem XXV.

 If the refittance made to an ofcillating body in each of the proportional parts of the arcs. defcribed be augmented or diminifbed in a given ratio; the difference between the arc defcribed in the defcent and the arc defcribed in the fubfequent afcent, will be augmented or diminifhed in the fame ratio.For that difference arifes from the retardation of the pendulum by the refiftance of the medium, and therefore is as the whole retardation, and the retarding
 pofition the rectangle under the right line $\frac{1}{2} a B$ and the difference $A a$ of the arcs $C B, C a$ was equal to the area $B K T a$. And that area, if the length $a B$ remains, is augmented or diminifhed in the ratio of the ordinates $D K$; that is, in the ratio of the refiftance, and is therefore as the length $a B$ and the refiftance conjunctly.
junctly. And therefore the rettangle under $A a$ and $\frac{1}{2} a B$ is as $a B$ and the refiftance conjunctly, and therefore $A a$ is as the refiftance. O.E.D.

Cor. 1 . Hence if the refiftance be as the velocity, the difference of the ares in the fame medium will be as the whole arc defcribed: and the contrary.
Cor. 2. If the refiftance be in the duplicate ratio of the velocity, that difference will be in the duplicate ratio of the whole arc : and the contrary.
Cor.3. And univerfally, if the refiftance be in the triplicate or any other ratio of the velocity, the difference will be in the fame ratio of the whole arc: and the contrary.
Cor. 4. If the refiftance be partly in the fimple ratio of the velocity, and partly in the duplicate ratio of the fame, the difference will be partly in the ratio of the whole are, and partly in the duplicate ratio of it : and the contrary. So that the law and ratio of the refiftance will be the fame for the velocity, as the law. and ratio of that difference for the length of the arc.
Cor. 5. And therefore if a pendulum defcribe fucceffively unequal arcs, and we can find the ratio of the increment or decrement of this difference for the length of the arc defcribed; there will be had alfo the ratio of the increment or decrement of the refiftance for a greater or lefs velocity.

General Scholium.

From thefe Propofitions, we may find the refiffance of mediums by pendulums ofcillating therein. I found the refiftance of the air by the following experiments. I fufpended a wooden globe or ball weighing $57 \frac{1}{2}$, ounces Averdupois, its diameter $\sigma_{\frac{1}{8}}$ London inches, by a fine thread on a firm hook, fo that the diftance between the hook and the centre of ofcillation of the globe was. $10 \frac{1}{2}$ foot. I marked on the thread a point 10 foot and

I inch diftant from the centre of fufpenfion; and even with that point I placed a ruler divided into inches, by the help whereof I obferved the lengths of the arcs defcribed by the pendulum. Then I number'd the ofcillations, in which the globe would lofe $\frac{1}{8}$ part of its motion. If the pendulum was drawn afide from the perpendicular to the diftance of 2 inches, and thence let go, fo that in its whole defcent it defribed an arc of two inches, and in the firft whole ofcillation, compounded of the defcent and fubfequent afcent, an arc of almoft four inches: the fame in 164 ofcillations loft $\frac{x}{8}$ part of its motion, fo as in its laft afcent to defrribe an arc of $\mathrm{I}_{4}^{\frac{1}{4}}$ inches. If in the firft defcent it defcribed an arc of 4 inches; it loft $\frac{1}{8}$ part of its motion in 12 I ofcillations, fo as in irs laft afcent to defcribe an arc of $3 \frac{1}{2}$ inches. If in the firft defcent it defcribed an arc of $8,16,32$, or 64 inches; it loft $\frac{1}{8}$ part of its motion in $69,35 \frac{1}{2}, 18 \frac{1}{2}, 9 \frac{2}{3}$ ofcillations, refpectively. Therefore the difference between the arcs defcribed in the firft defcent and the laft afcent, was in the $1^{\text {f }}, 2^{\text {d }}, 3^{\text {d }}, 4^{\text {th }}, 5^{\text {th }}, 6^{\text {th }}$ cafe, $\frac{1}{4}, \frac{1}{2}, 1,2,4,8$ inches, refpectively. Divide thofe differences by the number of ofcillations in each cafe, and in one mean ofcillation, wherein an arc of $3 \frac{1}{4}, 7 \frac{1}{2}, 15,30,60,120$ inches was defrribed, the difference of the arcs defcribed in the defcent and fubfequent afcent will be $\frac{1}{656}, \frac{1}{242}, \frac{1}{69}, \frac{4}{71}, \frac{8}{37}, \frac{24}{29}$ parts of an inch, refpectively. But thefe differences in the greater ofcillations are in the duplicate ratio of the arcs defribed nearly, but in leffer ofcillations fomething greater than in that ratio ; and therefore (by Cor. 2. Prop. 3 I. of this Book) the refiftance of the globe, when it moves very fwift, is in the duplicate ratio of the velocity, nearly; and when it moves flowly, fomewhat greater than in that ratio.

Now let V reprefent the greate? velocity in any ofcillation, and let A, B, and C be given quantities, and let us fuppofe the difference of the arcs to be AV $B V^{\frac{3}{2}}-1-C V^{2}$. Since the greateft velocities are in the cycloid as $\frac{1}{2}$ the arcs defcribed in ofcillating, and in the circle as $\frac{1}{2}$ the chords of thofe arcs; and therefore in equal arcs are greater in the cycloid than in the circle, in the ratio of $\frac{1}{2}$ the arcs to their chords; but the times in the circle are greater than in the cycloid, in a reciprocal ratio of the velocity; it is plain that the differences of the arcs (which are as the refiftance and the fquare of the time conjunctly) are nearly the fame, in both curves: for in the cycloid thofe differences muft be on the one hand augmented, with the refiftance, in about the duplicate ratio of the arc to the chord, becaufe of the velocity augmented in the fimple ratio of the fame; and on the other hand diminifhed, with the fquare of the time, in the fame duplicate ratio. Therefore to reduce thefe obfervations to the cycloid, we muft take the fame differences of the arcs as were obferved in the circle, and fuppofe the greateft velocities analogous to the half, or the whole arcs, that is, to the rumbers $\frac{1}{2}, 1,2,4,8,16$. Therefore in the $2^{2}, 4^{\text {th }}$, and $\sigma^{\text {th }}$ cafe, put 1,4 and 16 for V; and the difference of the arcs in the 2^{d} cafe will become $\frac{\frac{1}{2}}{12 \mathrm{I}}=\mathrm{A}+\mathrm{B}$ +C ; in the $4^{\text {th }}$ cafe $\frac{2}{35^{\frac{1}{2}}}=4 \mathrm{~A}+8 \mathrm{~B}+16 \mathrm{C}$; in the $\sigma^{\text {th }}$ cafe $\frac{8}{9^{\frac{2}{3}}}=16 \mathrm{~A}+64 \mathrm{~B}+256 \mathrm{C}$. Thefe equar tions reduced give $A=0,0000916, B=0,0010847$, and $\mathrm{C}=0,0029558$. Therefore the difference of the arcs is as $0,0000916 \mathrm{~V}+0,0010847 \mathrm{~V}^{\frac{3}{2}}+$ $0,0029558 \mathrm{~V}^{2}$: and therefore fince (by Cor. Prop. 30 . applied to this cafe) the refiffance of the globe in the Vol. II. H middle
middle of the arc defrribed in ofcillating, where the velocity is V , is to its weight as $\frac{1}{1}_{2} \mathrm{AV}+{ }_{10}^{2} \mathrm{BV}^{\frac{3}{2}}-1-$ ${ }_{4} C^{2}$ to the length of the pendulum; if for A, B, and C you put the numbers found, the refiffance of the globe will be to its weight, as $0,0000583 \mathrm{~V}-1-$ $0,0007593 \mathrm{~V}^{\frac{1}{2}}-1-0,0022169 \mathrm{~V}^{2}$ to the length of the pendulum between the centre of fufpenfion and the ruler, that is, to 12 I inches. Therefore fince V in the $2^{\text {d }}$ cafe reprefents 1 , in the $4^{\text {th }}$ cafe 4 , and in the $6^{\text {th }}$ cafe 16:: the refiftance will be to the weight of the globe, in the $2^{\text {d }}$ cafe as 0,0030345 to 121 , in the $4^{\text {th }}$ as 0,041748 to 121 , in the $6^{\text {th }}$ as 0,61705 to 121 .
The arc which the point marked in the thread deIcribed in the $\sigma^{\text {th }}$ cafe, was of $120-\frac{8}{9^{\frac{2}{3}}}$ or $1199_{2} \xi^{9}$ inches. And therefore fince the radius was 121 inches, and the length of the pendulum between the point of fufpenfion and the centre of the globe was 126 inches, the arc which the centre of the globe defcribed was $124 \frac{2}{3} \mathrm{i}$ inches. Becaufe the greatelt velocity of the ofcillating body, by reafon of the refifitance of the air, does not fall on the loweft point of the arc defcribed, but near the middle place of the whole arc : this velocity will be nearly the fame as if the globe in its whole defcent in a non-refifting medium fhould defcribe $\sigma_{2} \frac{2}{2}$ inches the half of that arc, and that in a cycloid, to which we have above reduced the motion of the pendulum : and therefore that velocity will be equal to that which the globe would acquire by falling perpendicularly from a height equal to the verfed fine of that arc. But that verfed fine in the cycloid is to that arc $\sigma_{2}{ }_{62}^{2}$ as the fame arc to twice the length of the pendulum 252, and therefore equal to 15,278 inches. Therefore the velocity of the pendulum is the fame which a body would acquire by falling, and in its fall
defcribing a fpace of 15,278 inches. Therefore with fuch a velocity the globe meets with a refiftance, which is to its weight as 0,61705 to 121 , or (if we take that part only of the refiftance which is in the duplicate ratio of the velocity) as 0,56752 to 121 .

I found by an hydroftatical experiment, that the weight of this wooden globe was to the weight of a globe of water of the fame magnitude as 55 to 97 : and therefore fince 12 I is to 213,4 in the fame ratio, the refiftance made to this globe of water moving forwards with the abovementioned velocity, will be to its weight as 0,56752 to 213,4 , that is, as 1 to $376 \frac{1}{50}$. Whence fince the weight of a globe of water, in the time in which the globe with a velocity uniformly continued defcribes a length of 30,556 inches, will generate all that velocity in the falling globe ; it is manifert thar the force of refiftance uniformly continued in the fame time will take away a velocity, which will be lefs than the other in the ratio of I to $376 \frac{1}{30}$, that is, the $\frac{1}{376 \sigma_{3}^{\frac{1}{0}}}$ part of the whole velocity. And therefore in the time that the globe, with the fame velocity uniformly continued, would defcribe the length of its femi-diameter, or $3{ }_{1}^{2} 6$ inches, it would lofe the $\frac{1}{3+32}$ part of its motion.

I alfo counted the ofcillations in which the pendulum loft $\frac{1}{4}$ part of its motion. In the following table the upper numbers denote the length of the arc defrribed in the firft defcent, expreffed in inches and parts of an inch; the middle numbers denote the length of the arc defcribed in the laft afcent; and in the loweft place are the numbers of the ofcillations. I give an account of this experiment, as being more accurate than that in which only $\frac{1}{8}$ part of the motion was loft. I leave the calculation to fuch as are difpofed to make it.

Firft defcent	2	4	8	16	32	64
Lafft afcent	$1 \frac{1}{2}$	3	6	12	24	48
Numb. of of cill.	374	272	$162 \frac{1}{2}$	$83 \frac{1}{3}$	$4 \frac{1}{3}$	$22 \frac{2}{3}$

I afterwards fufpended a leaden globe of 2 inches in diameter, weighing $26 \frac{1}{4}$ ounces Averdupois by the fame thread, fo that between the centre of the globe and the point of fufpenfion there was an interval of $10 \frac{1}{2}$ feet, and I counted the ofcillations in which a given part of the motion was loft. The firft of the following tables exhibits the number of ofcillations in which $\frac{1}{8}$ part of the whole motion was loft; the fecond the number of ofcillations in which there was loft $\frac{1}{4}$ part of the fame.

Firft defcent	1	2	4	8	16	32	64
Laft afcent	$\frac{1}{8}$	$2 \frac{2}{4}$	$3 \frac{1}{2}$	7	14	28	56
Numb. of ofcill.	226	228	193	140	$90 \frac{1}{2}$	53	30
Firft defcent	1	2	4	8	16	32	64
Laft afcent	$\frac{3}{4}$	$1 \frac{1}{2}$	3	6	12	24	48
Numb. of of cill.	510	518	420	318	204	121	70

Selecting in the firft table the $3^{\text {d }}, 5^{\text {th }}$, and $7^{\text {th }}$ obfervation, and expreffing the greateft velocities in thefe obfervations particularly by the numbers $1,4,16$ refpectively, and generally by the quantity V as above : there will come out in the $3^{\text {d }}$ obfervation $\frac{\frac{1}{2}}{193}=\mathrm{A}+$ $\mathrm{B}+\mathrm{C}$, in the $5^{\text {th }}$ obfervation $\frac{2}{90 \frac{1}{2}}=4 \mathrm{~A}+8 \mathrm{~B}+$ 16 C , in the $7^{\text {h }}$ obfervation $\frac{8}{30}=16 \mathrm{~A}+64 \mathrm{~B}+$ 256 C . Thefe equations reduced give $A=0,001414$, $\mathrm{B}=0,000297, \mathrm{C}=0,000879$. And thence the refiftance of the globe moving with the velocity V will be to its weight $2 \sigma \frac{1}{4}$ ounces, in the fame ratio as $0,8009 \mathrm{~V}+0,000208 \mathrm{~V}^{\frac{1}{2}}+0,000659 \mathrm{~V}^{2} \begin{array}{r}\text { to } 12 \mathrm{I} \\ \text { inches }\end{array}$
inches the length of the pendulum. And if we regard that part only of the reffiftance which is in the duplicate ratio of the velocity, it will be to the weight of the globe as $0,0006 \rho 9 \mathrm{~V}^{2}$ to 12 I inches. But this part of the refiftance in the I^{f} experiment was to the weight of the wooden globe of 57_{2}^{2} 2 ounces as $0,002217 \mathrm{~V}^{2}$ to 121 ; and thence the refiftance of the wooden globe is to the refiftance of the leaden one (their velocities being equal) as $57 \frac{2}{22}$ into 0,002217 to $26 \frac{1}{4}$ into 0,000659 , that is, as $7 \frac{1}{3}$ to 1 . The diameters of the two globes were $\sigma \frac{7}{8}$ and 2 inches, and the fquares of thefe are to each other as $47 \frac{1}{4}$ and 4 , or $11 \frac{13}{16}$ and I, nearly. Therefore the refiftances of thefe equally fwift globes were in lefs than a duplicate ratio of the diameters. But we have not yet confider'd the refiffance of the thread, which was certainly very confiderable, and ought to be fubducted from the refiftance of the pendulums here found. I could not determine this accurately, but I found it greater than a third part of the whole refiftance of the Ieffer pendulum ; and thence I gathered that the refiftances of the globes, when the refiftance of the thread is fubducted, are nearly in the duplicate ratio of their diameters. For the ratio of $7 \frac{1}{3}-\frac{1}{3}$ to $\mathrm{I}-\frac{1}{3}$, or $\mathrm{r} 0 \frac{1}{2}$ to I is not very different from the duplicate ratio of the diameters, $1 I_{12}^{1 / 2}$ to I .

Since the refiftance of the thread is of lefs moment in greater globes, I tried the experiment alfo with a globe whore diameter was $18 \frac{3}{4}$ inches. The length of the peadulum between the point of fufpenfion and the centre of ofrillation was $122 \frac{1}{2}$ inches, and between the point of fufpenfion and the knot in the thread $109 \frac{1}{2}$ inches. The arc defcribed by the knot at the firft defcent of the pendulum was 32 inches. The arc defrribed by the fame knot in the laft afcent after five ofillations was 28 inches. The fum of the ares or the whole arc defcribed in one mean ofcillation was 60
inches. The difference of the arcs 4 inches. The II part of this, or the difference between the defcent and afcent in one mean ofcillation is $\frac{2}{5}$ of an inch. Then as the radius $109 \frac{1}{2}$ to the radius $122 \frac{1}{2}$ to is the whole arc of 60 inches defcribed by the knot in one mean ofcillation to the whole arc of $67 \frac{1}{8}$ inches defrribed by the centre of the globe in one mean ofcillation; and fo is the difference $\frac{2}{5}$ to a new difference 0,4475 . If the length of the arc defribed were to remain, and the length of the pendulum fhould be augmented in the ratio of 126 to $122 \frac{1}{2}$; the time of the ofcillation would be augmented, and the velocity of the pendulum would be diminimed in the fubduplicate of that ratio; fo that the difference 0,4475 of the arcs deferibed in the defcent and fubfequent afcent would remain. Then if the arc defcribed be augmented in the ratio of $124 \frac{2}{3}$ to $67 \frac{1}{8}$, that difference 0,4475 would be amgmented in the duplicate of that ratio, and fo would become 1,5295. Thefe things would be fo upon the fuppofition, that the refiftance of the pendulum were in the duplicate ratio of the velocity. Therefore if the pendulum deferibe the whole arc of $124 \frac{3}{3}$ inches, and its length between the point of fufpenfion and the centre of ofcillation be 12σ inches, the difference of the arcs defrribed in the defcent and fubfequent afcent would be $1,5.295$ inches. And this difference multiplied into the weight of the pendulous globe, which was 208 ounces, produces 318,136 . Again in the pendulum abovementioned, made of a wooden globe, when its centre of ofcillation, being 126 inches from the point of fufpenfion, defrribed the whole arc of $124_{3}^{\frac{1}{T}}$ inches, the difference of the arcs defcribed in the defcent and afo cent was $\frac{126}{121}$ into $\frac{8}{9 \frac{2}{3}}$. This multiplied into the weight of the globe, which was $57 \frac{3}{2 / 2}$ ounces, produces 49,396. But $\mathbf{1}$ multiply thefe differences into the weights of the globes, in order to find their refiftances. For the diffe:

Scet. VI. of Natural Pbilofophy. 103 differences arife from the refiftances, and are as the refiftances directly and the weights inverfely. Therefore the refiffances are as the numbers 318,136 and 49,396 . But that part of the refiftance of the leffer globe, which is in the duplicate ratio of the velocity, was to the whole refiftance as 0,56752 to 0,61675 , that is, as 45,453 to 49,396 ; whereas that part of the refiftance of the greater globe is almoft equal to its whole refiftance ; and fo thofe parts are nearly as 318,136 and 45,453 , that is, as 7 and I . But the diameters of the globes are $18 \frac{1}{4}$ and $6 \frac{2}{8}$; and their fquares 3511_{16}^{2} and $47 \frac{12}{4}$ are as 7,438 and x , that is, as the refiftances of the globes 7 and 1 , nearly. The difference of thefe ratio's is fcarce greater than may arife from the refiffance of the thread. Therefore thofe parts of the refiftances which are, when the globes are equal, as the fquares of the velocities; are alfo, when the velocities are equal, as the fquares of the diameters of the globes.
But the greateft of the globes, I ufed in thefe experiments, was not perfectly Spharical, and therefore in this calculation I have, for brevity's fake, neglected fome little niceties; being not very follicitous for an accurate calculus, in an experiment that was not very accurate. So that I could wifh, that thefe experiments were tried again with other globes, of a larger fize, more in number, and more accurately formed; fince the demonftration of a vacuum depends thereon. If the globes be taken in a geomerrical proportion, as fuppofe whofe diameters are $4,8,16,32$ inches; one may colleat from the progreffion obferved in the experiments what would happen if the globes were ftill larger.
In order to compare the refiftances of different fluids with each other, I made the following trials. I procured a wooden veffel 4 feet long, i foot broad, and I foot high. This veffel, being uncover'd, I fill'd with fpring-water, and having immerfed pendulums therein, I made them ofcillate in the water. And I H_{4} found

104 Mathematical Principles Book II. found that a leaden globe weighing $166 \frac{1}{6}$ ounces, and in diameter $3 \frac{5}{8}$ inches, moved therein as it is fet down in the following table; the length of the pendulum from the point of fulpenfion to a certain point marked in the thread being 126 inches, and to the centre of ofcillation $134 \frac{3}{8}$ inches.

T'he arce defribed in) the firft defent b)
a point marked in $64 \cdot 32 \cdot 16.8 \cdot 4 \cdot 2 \cdot 1 \cdot \frac{1}{2} \cdot \frac{1}{4}$ the thread, vvas inches
The arc deforibed in?
$\left.\begin{array}{l}\text { the laft afcent, wvas } \\ \text { inches }\end{array}\right\} 88 \cdot 24 \cdot 12 \cdot 6 \cdot 3 \cdot 1 \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{8} \cdot \frac{1}{16}$
The difference of the arcs proportional to
the motion loft, wwas $16: 8 \cdot 4 \cdot 2 \cdot 1 \cdot \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{8} \cdot \frac{1}{16}$ inches
The number of the?
of cillations in wa-\} $\quad \frac{29}{6} \cdot 1 \frac{1}{5} \cdot 3 \cdot 7 \cdot 11 \frac{1}{4} \cdot 12 \frac{2}{3} \cdot 13 \frac{1}{3}$
The number of the
ofcillations in air. $\} 85 \frac{1}{2}=287.535$
In the experiments of the $4^{\text {th }}$ column, there were equal motions loft in 535 ofcillations made in the air, and $1 \frac{1}{5}$ in water. The ofcillations in the air were indeed a little fwifter than thofe in the water. But if the ofcillations in the water were accelerated in fuch a ratio that the motions of the pendulums might be equally fwift in both mediums, there would be fill the fame number $1 \frac{1}{5}$ of ofcillations in the water, and by thefe the fame quantity of motion would be loft as before ; becaufe the refiftance is increafed and the fquare of the time diminifhed in the fame duplicate ratio. : The pendulums therefore being of equal velocities there were
equal motions loft in 535 ofcillations in the air, and $1 \frac{1}{5}$ in the water; and therefore the refiftance of the pendulum in the water is to its reliftance in the air as 535 to $1 \frac{1}{4}$. This is the proportion of the whole refiftances in the cafe of the $4^{\text {th }}$ column.

Now let AV-1-CV2 reprefent the difference of the arcs defcribed in the defcent and fubfequent afcent by the globe moving in air with the greateft velocity V ; and fince the greateft velocity is in the cafe of the $4^{\text {th }}$ column to the greateft velocity in the cafe of the $\mathbf{I}^{\text {a }}$ column as 1 to 8 ; and that difference of the arcs in the cafe of the $4^{\text {th }}$ column to the difference in the cafe of the 1^{A} column, as $\frac{2}{535}$ to $\frac{16}{85 \frac{1}{2}}$, or as $85 \frac{1}{2}$ to 4280 : put in thefe cafes 1 and 8 for the velocities, and $85 \frac{3}{2}$ and 4280 for the differences of the arcs, and $A+C$ will be $=85 \frac{1}{2}$, and $8 \mathrm{~A}-64 \mathrm{C}=4280$ or $\mathrm{A}+8 \mathrm{C}$ $=535$; and then, by reducing thefe equations, there will come out $7 \mathrm{C}=449 \frac{1}{2}$ and $\mathrm{C}=64 \frac{1}{2}$ and $\mathrm{A}=$ $21 \frac{2}{7}$: and therefore the refiftance, which is as ${ }_{1}^{2}, \mathrm{AV}$ $-1-\frac{3}{4} \mathrm{C} V^{2}$, will become as $13, \frac{6}{11} \mathrm{~V}-1-48, \frac{2}{8} \mathrm{~V}$? Therefore in the cafe of the $4^{\text {th }}$ column, where the velocity was I , the wholerefiftance is to its part proportional to the fquare of the velocity, as $13 \frac{6}{12}-1-48 \frac{2}{36}$ or $61 \frac{1}{1} \frac{2}{7}$ to $48 \frac{2}{56}$; and therefore the refiftance of the pendulum in water is to that part of the refiftance in air, which is proportional to the fquare of the velocity, and which in fwife motions is the only part that deferves confideration, as $\sigma_{1 \frac{1}{1} \frac{2}{7}}$ to $48 \frac{2}{5} \frac{2}{6}$ and 535 to $1 \frac{1}{5}$ conjunctly, that is, as 57 I to i.' If the whole thread of the pendulum ofrillating in the water had been immerfed, its refiftance would have been ftill greater; fo that the refiftance of the pendulum of cillating in the water, that is, that part which is proportional to the fquare of the velocity, and which only needs to be confider'd in fwift bodies, is to the refiftance of the fame whole pendulum, ofcillating in air
with the fame velocity, as about 850 to r , that is, as the denfity of water to the denfity of air, nearly.

In this calculation, we ought alfo to have taken in that part of the refiftance of the pendulum in the water, which was as the fquare of the velocity, but I found (which will perhaps feem ftrange) that the refiftance in the water was augmented in more than a duplicate ratio of the velocity. In fearching after the caufe, I thought upon this, that the veffel was too narrow for the magnitude of the pendulous globe, and by its narrownefs obftructed the motion of the water as it yielded to the ofcillating globe. For when I immerfed a pendulous globes, whofe diameter was one inch only; the refiftance was augmented nearly in a duplicate ratio of the velocity. I tried this by making a pendulum of two globes, of which the leffer and lower ofcillated in the water, and the greater and higher was faftened to the thread juft above the water, and by ofcillating in the air, affifted the motion of the pendulum, and continued it longer. The experiments made by this contrivance proved according to the following table.

In comparing the refiftances of the mediums with each other, I allo caufed iron pendulums to of cillate in quickfilver. The length of the iron wire was about 3 feet, and the diameter of the pendulous globe about $\frac{1}{3}$ of an inch. To the wire, juft above the quickfilver, there was fixed another leaden globe of a bignefs fufficient to continue the motion of the pendulum for fome time. Then a veffel, that would hold about 3 pounds af quickfilver, was filled by turns with quick filver and common

Sect. VI. of Natural Philofophy.
common water, that by making the pendulum ofcillate fucceffively in thefe two different fluids, I might find the proportion of their refiftances: and the refiftance of the quickfilver proved to be to the refiftance of water as about 13 or 14 to 1 ; that is, as the denfity of quickfilver to the denfity of water. When I made ufe of a pendulous globe fomething bigger, as of one whofe diameter was about $\frac{1}{2}$ or $\frac{2}{3}$ of an inch, the refiftance of the quickfilver proved to be to the refiftance of the water as about 12 or 10 to 1 . But the former experiment is more to be relied on, becaufe in the latter the veffel was too narrow in proportion to the magnitude of the immerfed globe: For the veffel ought to have been enlarged together with the globe. I intended to have repeated thefe experiments with larger veffels, and in melted metals, and other liquers both cold and hot : but I had not leifure to try all; and befides, from what is already defcribed, it appears fufficiently that the refiftance of bodies moving fwiftly is nearly proportional to the denfities of the fluids in which they move. I don't fay accurately. For more tenacious fluids, of equal denfity, will undoubtedly refift more than thofe that are more liquid, as cold oil more than warm, warm oil more than rin-water, and water more than fpirit of wine. But in liquors, which are fenfibly fluid enough, as in air, in falt and frefh water, in fpirit of wine, of tutpentine and falts, in oil cleared of its fxces by diftillation and warmed, in oil of vitriol and in mercury, and melted metals, and any other fuch like, that are fluid enough to retain for fome time the motion impreffed upon them by the agitation of the veffel, and which being poured out are eafily refolv'd into drops: I doubt not but the rule already laid down may be accurate enough, efpecially if the experiments be made with larger pendulous bodies, and more fwiftly moved.

Laftly, fince it is the opinion of fome, that there is z certain athereal medium extremely rare and fubtile, which
which freely pervades the pores of all bodies; and from fuch a medium fo pervading the pores of bodies, fome refiftance mult needs arife: in order to try whether the refiftance, which we experience in bodies in motion, be made upon their outward fuperficies only, or whether their internal parts meet with any confiderable refiftance upon their fuperficies; I thought of the following experiment. I fufpended a round deal box by a thread ir feet long, on a fteel hook by means of a ring of the fame metal, fo as to make a pendulum of the aforefaid length. The hook had a fharp hollow edge on its upper part, fo that the upper arc of the ring preffing on the edge might move the more freely: and the thread was faftened to the lower arc of the ring: The pendulum being thus prepared, I drew it afide from the perpendicular to the diftance of about σ feer, and that in a plane perpendicular to the edge of the hook, left the ring, while the pendulum ofcillated, fhould flide to and fro on the edge of the hook: For the point of furpenfion, in which the ring touches the hook, ought to remain immoveable. I therefore accurately noted the place, to which the pendulum was brought, and letting it go, I marked three other places, to which it returned at the end of the $1^{\mathrm{A}}, 2^{\mathrm{d}}$, and $3^{\text {d }}$ ofcillation. This I often repeated, that I might find thofe places as accurately as polfible. Then I filled the box with lead and other heavy metals, that were near at hand. But firf I weighed the box when empty, and that part of the thread that went round it, and half the remaining part extended between the hook and the fufpended box. For the thread fo extended always acts upon the pendulum, when drawn afide from the perpendicular, with half its weight. To this weight I added the weight of the air contained in the box. And this whole weight was about $\frac{1}{78}$ of the weight of the box when filled with the metals. ${ }^{78}$ Then becaufe the box when full of the metals, by extending the thread with its weight, in-
creafed the length of the pendulum, I mortened the thread fo as to make the length of the pendulum, when ofcillating, the fame as before. Then drawing afide the pendulum to the place firft marked, and letting it go, I reckoned about 77 ofcillations, before the box returned to the fecond mark, and as many afterwards before it came to the third mark, and as many after that, before it came to the fourth mark. From whence I conclude that the whole refiftance of the box, when full, had not a greater proportion to the refiftance of the box, when empty, than 78 to 77 . For if their refiftances were equal, the box, when full, by reafon of its vis infita, which was 78 times greater than the vis infita of the fame when empty, ought to have continued its ofcillating motion fo much the longer, and therefore to have returned to thofe marks at the end of 78 ofcillations. But it returned to them at the end of 77 ofcillations.

Let therefore A reprefent the refiffance of the box upon its external fuperficies, and B the refiftance of the empty box on its internal fuperficies; and if the refiftances to the internal parts of bodies equally fwift be as the matter, or the number of particles that are refifted: then 78 B will be the refiffance made to the internal parts of the box, when full; and therefore the whole refiftance A-1-B of the empty box will be to the whole refiffance $\mathrm{A}+78 \mathrm{~B}$ of the full box as 77 to 78 , and, by divifion, $\mathrm{A}-1-\mathrm{B}$ to 77 B , as 77 to r , and thence $\mathrm{A}+\mathrm{B}$ to B as 77×77 to r , and, by divifion again, A to B as $\rho 928$ to I. Therefore the refiftance of the empty box in its internal parts will be above 5000 times lefs than the reffiftance on its external fuperficies. This reafoning depends upon the fuppofition that the greater refiftance of the full box arifes, not from any other latent caufe, but only from the action of fome fubtile fluid upon the included metal.

This experiment is related by memory, the paper being loft, in which I had defcribed it; fo that I have been obliged to omit fome fractional parts, which are flipt out of my memory. And I have no leifure to try it again. The firft time 1 made it, the hook being weak, the full box was retarded fooner. The caufe I found to be, that the hook was not frong enough to bear the weight of the box; fo that as it ofcillated to and fro, the hook was bent fometimes this and fometimes that way. I therefore procured a hook of fufficient ftrength, fo that the point of fufpenfion might remain unmoved, and then all things happened as is above defcribed.

SEC-

SECTION VII.

Of the motion of fuids and the refiftance made to projected bodies.

Proposition XXXII. Theorem XXVI.

 Suppofe two fimilar fyftems of bodies confiting of an equal number of particles, and let the correfpondent particles be finsilar and proportional, each in one fyftem to each in the other, and have a like fituation among themselves, and the fame given ratio of denfity to each other; and let them begin to move among themfelves in proportional times, and with like motions, (that is, thofe in one fyftem among one another, and thofe in the other among one another.) And if the particles that are in the fame fyftem do not touch one another, except in the moments of reflexion; nor attract, nor repel each other, except with accelerative forces that are as the diameters of the correfpondent particles inverfely, and the Squares of the velocities directly: I fay, that the particles of thofe Jyftems will continue to move among themfelves with like motions and in proportional times.Like bodies in like fituations are faid to be moved among therafelves with like motions and in proportional times,
times, when their fituations at the end of thofe times are always found alike in refpeft of each other: as fuppole we compare the particles in one fyftem with the correfpondent particles in the other. Hence the times will be proportional, in which fimilar and proportional parts of fimilar figures will be defcribed by correfpondent particles. Therefore if we fuppofe two fyftems of this kind, the correfpondent particles, by reafon of the fimilitude of the motions at their beginning, will continue to be moved with like motions, fo long as they move withour meeting one another. For if they are acted on by no forces, they will go on uniformly in right lines by the $\mathrm{I}^{\text {f }}$ law. But if they do agitate one another, with fome certain forces, and thofe forces are as the diameters of the correfpondent particles inverfely and the fquares of the velocities directly ; then becaufe the particles are in like fituations, and their forces are proportional, the whole forces with which correfpondent particles are agitated, and which are compounded of each of the agitating forces, (by Corol. 2. of the Laws) will have like direttions, and have the fame effect as if they refpected centres placed alike among the particles; and thofe whole forces will be to each other as the feveral forces which compofe them, that is, as the diameters of the correfpondent particles inverfely, and the fquares of the velocities directly : and therefore will caufe correfpondent particles to continue to defcribe like figures. Thefe things will be fo (by Cor. \mathbf{r} and 8. Prop.4. Book I.) if thofe centres are at reft. But if they are moved, yer by reafon of the fimilitude of the tranflations, their fituations among the particles of the fyftem will remain fimilar ; fo that the changes introduced into the figures defcribed by the particles will ftill be fimilar. So that the motions of correfpondent and fimilar particles will continue fimilar till their firft meeting with each other ; and thence will arife fimilar collifions, and fimilar reflexions; which will again beget fimilar
fimilar motions of the particles among themfelves (by what was juft now fhewn) till they mutually fall upon one another again, and fo on ad infinitum.

Cor. I. Hence if any two bodies, which are fimilar and in like fituations to the correfpondent particles of the fyftems, begin to move amongft them in like manner and in proportional times, and their magnitudes and denfities be to each other as the magnitudes and denfities of the correfponding particles: thefe bodies will continue to be moved in like manner and in proportional times. For the cafe of the greater parts of both fyftems and of the particles is the very fame.
Cor. 2. And if all the fimilar and fimilarly fituated parts of both fyftems be at reft among themfelves : and two of them, which are greater than the reft, and mutually correfpondent in both fyltems, begin to move in lines alike pofited, with any fimilar motion whatfoever; they will excite fimilar motions in the reft of the parts of the fyftems, and will continue to move among thofe parts in like manner and in proportional times; and will therefore defcribe fpaces proportional to their diameters.

Proposition XXXIII. Theorem XXVII.'

The fame things being fuppofed, I fay that the greater parts of the fyftems are refifted in a ratio compounded of the duplicate ratio of their velocities, and the duplicate ratio of their, diameters, and the fimple ratio of the denfity. of the parts of the Jyfems.
For the reffiftance arifes partly from the centripetal or centrifugal forces with which the particles of the fyftem mutually act on each other, pattly from the collifions and refiexions of the particles and the greater parts. Yoz. II. I

The

114

The refiftances of the firft kind are to each other as the whole motive forces from which they arife, that is, as the whole accelerative forces and the quantities of matter in correfponding parts; that is, (by the fuppofition) as the fquares of the velocities directly, and the diffances of the correfponding particles inverfely, and the quantities of matter in the correfpondent parts directly : and therefore fince the diftances of the particles in one fyftem are to the correfpondent diftances of the particles of the other, as the diameter of one particle or part in the former fyftem to the diameter of the correfpondent particle or part in the other, and fince the quantities of matter are as the denfities of the parts and the cubes of the diameters; the refiftances are to each other as the fquares of the velocities and the fquares of the diameters and the denfities of the parts of the fy items. O.E.D. The refiftances of the latter fort are as the number of correfpondent reflexions and the forces of thofe reflexions conjunctly. But the number of the reflexions are to each other as the velocities of the corsefponding parts directly and the fpaces between their reflexions inverfely. And the forces of the reflexions are as the velocities and the magnitudes and the denfities of the correfponding parts conjunctly; that is, as the velocities and the cubes of the diameters and the denfities of the parts. And joining all thefe ratio's, the refiftances of the correfponding parts are to each other as the fquares of the velocities and the fquares of the diameters and the denfities of the parts conjunctly. O.E.D.

Cor. I. Therefore if thofe fyftems are two elaftic fluids, like our air, and their parts are at reft among themfelves; and two fimilar bodies proportional in magnitude and denfity to the parts of the fluids and fimilarly fituated among thofe parts, be any how projected in the direction of lines fimilarly pofited; and the accelerative forces with which the particles of the fluids mutually
mutually aft upon each other, are as the diamecters of the bodies projected inverfely and the fquares of their velocities directly : thofe bodies will excite fimilar motions in the fluids in popportional times, and will defcribe fimilar fpaces and proportional to their diameters.

Cor. 2. Therefore in the fame fluid a projected body that moves fwiftly meets with a refiftance that is in the duplicate ratio of its velocity, nearly. For if the forces, with which diftant particles act mutually upon one another, fhould be augmented in the duplicate ratio of the velocity, the projected body would be refifted in the fame duplicate ratio accurately; and cherefore in a medium, whofe parts when at a diftance do not act mutually with any farce on one another, the refiftance is in the duplicate ratio of the velocity accurately. Let there be therefore three mediums A, B, C, confifting of fimilar and equal parts regularly difpofed at equal diftances. Let the parts of the mediums A and B recede from each other with forces that are among themfelves as T and V; and let the parts of the medium C be entirely deftitute of any fuch forces. And if four equal bodies D, E, F, G move in thefe mediums, the two firft D and E in the two firt A and B, and the other two F and G in the third C; and if the velocity of the body D be to the velocity of the body E, and the velocity of the body F to the velocity of the body G in the fubduplicate ratio of the force T to the force $V:$ the refiftance of the body D to the refiftance of the body E, and the refiftance of the body F to the refif. tance of the body G will be in the duplicate ratio of the velocities; and therefore the refiftance of the body D will be to the refiftance of the body F, as the refiffance of the body E to the refiftance of the body G. Let the bodies D and F be equally fwift, as alfo the bodies E and G; and augmenting the velocities of the bodies D and F in any ratio, and diminifhing the forces of the particles of the medium B in the duplicate of the fame I 2
ratio
ratio, the medium B will approach to the form and condition of the medium C at pleafure; and therefore the refiftances of the equal and equally fwift bodies E and G in thefe mediums will perpetually approach to equality, fo that their differenge will at laft become lefs than any given. Therefore "fínce the refiftances of the bodies D and F are to each other as the refiftances of the bodies E and G, thofe will alfo in like manner approach to the ratio of equality. Therefore the bodies D and F, when they move with very great fwiftnefs, meet with reffiftances very nearly equal; and therefore fince the refiftance of the body F is in a duplicate ratio of the velocity, the refiftance of the body D will be nearly in the fame ratio.

Cor. 3. The refiftance of a body moving very fwift in an elaftic fluid is almoft the fame as if the parts of the fluid were deftitute of their centrifugal forces, and did not fly from each other : if fo be that the elafticity of the fluid arife from the centrifugal forces of the particles, and the velocity be fo great as not to allow the particles time enough to act.

Cor. 4. Therefore fince the refiffances of fimilar and equally fwift bodies, in a medium whofe diftant parts do not fly from each other, are as the fquares of the diameters; the refiffances made to bodies moving with very grear and equal velocities in an elaftic fluid, will be as the fquares of the diameters, nearly.

Cor. 5. And fince fimilar, equal, and equally fwift bodies, moving thro' mediums of the fame denfity, whofe particles do not fly from each other mutually, will ftrike againft an equal quantity of matter in equal times, whether the particles of which the medium confifts be more and fraller, or fewer and greater, and therefore imprefs on that matter an equal quantity of motion, and in return (by the 3^{d} law of motion) fuffer an equal re-action from the fame, that is, are equally refifted: it is manifeft alfo, that in elaftic fluids of

Set. VII. of Natural Philofophy.
the fame denfity, when the bodies move with extreme fwifteff, their refiftances are nearly equal ; whether the fluids confift of grofs parts, or of parts never fo fubtile. For the refiltance of projectiles moving with exceeding great celerities, is not much diminifhed by the fubtilty of the medium.
Cor. 6. All thefe things are fo in fluids, whofe elaftic force takes its rife from the centrifugal forces of the particles. But if that force arife from fome other caufe, as from the expanfion of the particles after the manner of wool, or the boughs of trees, or any other caufe, by which the particles are hindered from moving freely among themfelves; the refiftance, by reafon of the leffer fluidity of the medium, will be greater than in the corollaries above.

Proposition XXXIV.TheoremXXVIII.

If in a rare medium, confifting of equal particles freely difpofed at equal diftances from each otber, a globe and a cylinder defcribed on equal diameters move with equal velocities, in the direction of the axis of the cylinder: the refiftance of the globe will be but balf fo great as that of the cylinder.

For fince the action of the medium upon the body is the fame (by Cor. 5. of the laws) whether the body move in a quiefcent medium, or whether the particles of the medium impinge with the fame velocity upon the quiefcent body: let us confider the body as if it were quiefcent, and fee with what force it would be impelled by the moving medium. Let therefore ABKI (Pl. б. Fig. 2.) reprefent a fphxrical body defribed from the centre C with the femidiameter $C A$. and let the particles of the medium impinge with a gi-
ven velocity upon that fpharical body, in the directions of right lines parallel to $A C$; and let $F B$ be one of thofe right lines. In $F B$ take $L B$ equal to the femidiameter $C B$, and draw $B D$ touching the fphere in B. Upon $K C$ and $B D$ let fall the perpendiculars $B E, L D$, and the forse with which a particle of the medium, impinging on the globe obliquely in the direction $F B$, would frike the globe in B, will be to the force with which the fame particle, meeting the cylinder $O N G Q$ defrribed about the globe with the axis $A C I$, would ftrike it perpendicularly in b, as $L D$ to $L B$ or $B E$ to $B C$. Again, the efficacy of this force to move the globe according to the direction of its incidence $F B$ or $A C$, is to the efficacy of the fame to move the globe according to the direction of its determination, that is, in the direction of the right line $B C$ in which it impels the globe directly, as $B E$ to $B C$. And joining thefe ratio's the efficacy of a particle, falling upon the globe obliquely in the direction of the right line $F B$, to move the globe in the direction of its incidence, is to the efficacy of the fame particle falling in the fame line perpendicularly on the cylinder, to move it in the fame direction, as $B E^{2}$ to $B C^{2}$. Therefore if in $b E$, which is perpendicular to the circular bafe of the cylinder $N A O$, and equal to the radius $A C$, we take $b H$ equal to $\frac{B E^{2}}{C B}$: then $b H$ will be to $b E$ as the effect of the particle upon the globe to the effect of the particle upon the cylinder. And therefore the folid which is formed by all the right lines $6 \boldsymbol{F}$ will be to the folid formed by all the right lines $b E$ as the effect of all the particles upon the globe to the effect of all the particles upon the cylinder. But the former of thefe folids is a paraboloid whofe vertex is C, its axis $C A$ and latus rectum $C A$; and the latter folid is a cylinder circumfrribing the paraboloid :

Sce. VII. of Natural PhiloJophy.
and it is known that a paraboloid is half its circumfcribed cylinder. Therefore the whole force of the medium upon the globe is half of the entire force of the fame upon the cylinder. And therefore if the particles of the medium are at reft, and the cylinder and globe move with equal velocities, the refiftance of the globe will be half the refiftance of the cylinder. Q.E.D:

Scholium.

By the fame method other figures may be compared together as to their refiftance; and thofe may be found which are moft apt to continue their motions in refifting mediums. As if upon the circular bafe $C E B H$ (Pl. σ. Fig. 3.) from the centre O, with the radius $O C$, and the altitude $O D$, one would conftruct a fruftum $C B G E$ of a cone, which fhould meet with lefs refiftance than any other fruftum conftructed with the fame bafe and altitude, and going forwards towards D in the direction of its axis : bifect the altitude $O D$ in O, and produce $O Q$ to S, fo that $Q S$ may be equal to $O C$, and S will be the vertex of the cone whofe fruftum is fought.
Whence by the bye, fince the angle CSB is always acute, it follows, that if the folid $A D B E$ (Pl. 6. Fig. 4.) be generated by the convolution of an elliptical or oval figure $A D B E$ about its axe $A B$, and the generating figure be touched by three right lines $F G, G H, H I$ in the points F, B, and I, fo that $G H$ thall be perpendicular to the axe in the point of contact B, and $F G, H I$ may be inclined to $G H$ in the angles $F G B, B H I$ of 135 degrees; the folid arifing from the convolution of the figure $A D F G H I E$ about the fame axe $A B$, will be lefs refifted than the former folid; if fo be that both move forward in the direction of their axe $A B$, and that the extremity B of each go foremoft. Which propofition I conceive may be of ufe in the building of mips.

If the figure $D N F G$ be fuch a curve, that if from any point thereof as N the perpendicular $N M$ be let fall on the axe $A B$, and from the given point G there be drawn the right line $G R$ parallel to a right line touching the figure in N, and cutting the axe produced in $R, \boldsymbol{M} \boldsymbol{N}$ becomes to $G R$ as $G R^{3}$ to $4^{B} R \times G B^{2}$; the folid defrribed by the revolution of this figure about its axe $A B$, moving in the beforementioned rare medium from A towards B, will be lefs refifted than any other circular folid whatfoever, defcribed of the fame length and breadth.

> The demonfration of thefe curious Theorems being omitted by the author, the analyfis thereof, communicated by a friend, is added at the end of this volume.

Proposition XXXV. Problem VII.

 If a rare medium confitt of very fmall quiefcent particles of equal magnitudes and freely difpofed at equal diftances from one another: to find the refiftance of a globe moving uniformly forwards in this medium.CASE i. Let a cylinder defribed with the fame diameter and altitude be conceived to go forward with the fame velocity in the direction of its axis, thro' the fame medium. And let us fuppofe that the particles of the medium, on which the globe or cylinder falls, fly back with as great a force of reflexion as poffible. Then fince the refiftance of the globe (by the lait Propofition) is but half the refiftance of the cylinder, and fince the globe is to the cylinder as 2 to 3 , and fince the cylinder by falling perpendicuiarly on the particies, and reflecting them with the utmoft force communicates to them a velocity double to its own: it follows that the cylinder, in moving forward uniformly half the length of its axis, will communicate a motion to the particles, which is to the whole motion of the cylinder

Plate VI.T'̂́l. II. P. $2=0$.
$\mathcal{F}_{\text {ig.1. }}$ p. g_{1}.

"iq. 2.p.117.

rig.4.ilrid.

Sect. VII. of Natural Pbilofophy.
as the denfity of the medium to the denfity of the cylinder; and that the globe, in the time it defcribes one length of its diameter in moving uniformly forwards, will communicate the fame motion to the particles; and in the time that it defcribes two thirds of its diameter, will communicate a motion to the particles, which is to the whole motion of the globe as the denfity of the medium to the denfity of the globe. And therefore the globe meets with a refiftance, which is to the force by which its whole motion may be either taken away or generated in the time in which it defrribes two thirds of its diameter moving uniformly forwards, as the denfity of the medium to the denfity of the globe.
Case 2. Let us fuppofe that the particles of the medium incident on the globe or cylinder are not reflected; and then the cylinder falling perpendicularly on the particles will communicate its own fimple velocity to them, and therefore meets a refiftance but half fo great as in the former cafe, and the globe alfo meets with a refiftance but half fo great.

Case 3. Let us fuppofe the particles of the medium to fly back from the globe with a force which is neither the greateft nor yet none at all, but with a certain mean force; then the refiftance of the globe will be in the fame mean ratio between the refiftance in the firft cale and the refiftance in the fecond. Q.E.I.
Cor. I. Hence if the globe and the particles are infinitely hard, and deftitute of all elaftic force, and therefore of all force of reflexion: the refiftance of the globe will be to the force by which its whole motion may be deftroyed or generated, in the time that the globe defcribes four third parts of its diameter, as the denfity of the medium to the denfity of the globe.

Cor. 2. The refiftance of the globe, cateris paribus, is in the duplicate ratio of the velocity.
Cor. 3. The refiftance of the globe, cateris paribus, is in the duplicate ratio of the diameter.

Cor. 4. The refiftance of the globe is, cateris paribus, as the denfity of the medium.

COR. 5. The refiftance of the globe is in a ratio compounded of the duplicate ratio of the velocity, and the duplicaze ratio of the diameter, and the ratio of the denfity of the medium.

Cor. 6 . The motion of the globe and its refiftance may be thus expounded. Let $A B$ (Pl. 7. Fig. 1.) be the time in which the globe may, by its refiltance uniformly continued, lofe its whole motion. Ereat $A D, B C$ perpendicular to $A B$. Let $B C$ be that whole motion, and thro' the point C, the afymptotes being $A D, A B$, defcrite the hyperbola $C F$. Produce $A B$ to any point E. Erect the perpendicular $E F$ meeting the hyperbola in F. Compleat the parallelogram $C B E G$, and draw $A F$ meeting $B C$ in H. Then if the globe in any time $B E$, with its firf motion $B C$ uniformly continued, defrribes in a non-refifting medium the face $C B E G$ expounded by the area of the parallelogram, the fame in a refifting medium will defcribe the fpace $C B E F$ expounded by the area of the hyperbola; and its motion at the end of that time will be expounded by $E F$ the ordinate of the hyperbola; there being loft of its motion the part $F G$. And its reffitance at the end of the fame time will be expounded by the length $B H$; there being loft of its refiftance the part $C H$. All thefe things appear by Cor. I and 3. Prop. 5Book 2.

Cor.7. Hence if the globe in the time T by the refiftance R uniformly continued, lofe its whole motion M : the fame globe in the time t in a refifting medium, wherein the refiftance R decreafes in a duplicate ratio of the velocity, will lofe out of its motion \mathbf{M} the part $\frac{t \mathrm{M}}{\mathrm{T}-1-t}$, the part $\frac{\mathrm{TM}}{\mathrm{T}-1-t}$ remaining; and will defcribe a fpace which is to the fpace defcribed in the
fame time.t with the uniform motion M , as the logarithm of the number $\frac{\mathrm{T}-1-t}{\mathrm{~T}}$ multiplied by the number 2,302585092994 is to the number $\frac{t}{\mathrm{~T}}$, becaufe the hyperbolic area $B C F E$ is to the rectangle $B C G E$ in that proportion.

> SCHOLIUM.

I have exhibited in this Propofition the refiftance and retardation of fpharical projectiles in mediums that are not continued, and hewn that this refiftance is to the force by which the whole motion of the globe may be deftroyed or produced in the time in which the globe can defcribe two thirds of its diameter, with a velocity uniformly continued, as the denfity of the medium to the denfity of the globe, if fo be the globe and the particles of the medium be perfectly elaftic, and are indued with the utmoft force of reflexion: and, that this force, where the globe and particles of the medium are infinitely hard and void of any reflecting force, is diminihed one half. But in continued mediums, as water, hot oil, and quickfilver, the globe as it paffes thro them does not immediately ftrike againft all the particles of the fluid that generate the refiftance made to it, but preffes only the particles that lie next to it, which prefs the particles beyond, which prefs other particles, and fo on; and in thefe mediums the refiftance is diminithed one other half. A globe in thefe extrencely fluid mediums meets with a refiffance that is to the force by which its whole motion may be deftroyed or generated in the time wherein it can defcribe, with that motion uniformly continued, eight third parts of its diameter, as the denfity of the medium to the denfity of the globe. This I fhall endeavour to fhew in what follows.

Pro=

Proposition XXXVI. Problem VIII.

To define the motion of water running out of a cylindrical veffel tbro' a bole made at the bottom.

Let $A C D B$ (Pl. 7. Fig. 2.) be a cylindrical veffel, ' $A B$ the mouth of it, $C D$ the bottom parallel to the horizon, $E F$ a circular hole in the middle of the bottom, G the centre of the hole, and $G H$ the axis of the cylinder perpendicular to the horizon. And fuppofe a cylinder of ice $A P O B$ to be of the fame breadth with the cavity of the veffel, and to have the fame axis, and to defcend perpetually with an uniform motion, and that its parts as foon as they touch the fuperficies $A B$ diffolve into water, and flow down by their weight into the $v \in f$ fel, and in their fall compofe the cataract or column of water $A B N F E M$, paffing thro' the hole $E F$, and filling up the fame exactly. Let the uniform velocity of the defcending ice and of the contiguous water in the circle $A B$ be that which the wáter would acquire by falling thro' the fpace $I H$; and let $I H$ and $H G$ lie in the fame right line, and thro the point I let there be drawn the right line $K L$ parallel to the horizon, and meeting the ice on both the fides thereof in K and L. Then the velocity of the water running out at the hole $E F$ will be the fame that it would acquire by falling from I thro' the fpace IG. Therefore, by Galieo's Theorems, IG will be to $I \boldsymbol{H}$ in the duplicate ratio of the velocity of the water that runs out at the hole to the velocity of the water in the circle $A B$, that is, in the duplicate ratio of the circle $A B$ to the circle $E F$; thole circles being reciprocally as the velocities of the wâter which in the fame time and in equal quantities paffes feverally thro ${ }^{\circ}$
each of them, and compleatly fills them both. Weare now confidering the velocity with which the water tends to the plane of the horizon. But the motion parallel to the fame by which the- parts of the falling water approach to each other, is not here taken notice of; fince it is neither produced by gravity, nor at all changes the motion perpendicular to the horizon which the gravity produces. We fuppofe indeed that the parts of the water cohere a little, that by their cohefion they may in falling approach to each other with motions parallel to the horizon, in order to form one fingle cataract, and to prevent their being divided into feveral: but the motion parallel to the horizon arifing from this cohefion does not come under our prefent confideration.

Case i. Conceive now the whole cavity in the veffel, which encompaffes the falling water $A B N F E M$, to be full of ice, fo that the water may pals thro' the ice as thro' a funnel. Then if the water pafs very near to the ice only, without touching it ; or, which is the fame thing, if, by reafon of the perfect fmoothnefs of the furface of the ice, the water, tho' touching it, glides over it with the utmoft freedom, and without the leaft refiftance; the water will run thro the hole $E F$ with the fame velocity as before, and the whole weight of the column of water $A B N F E M$ will be all taken up as before in forcing out the water, and the bottom of the veffel will fuftain the weight of the ice encompaffing that column.

Let now the ice in the veffel diffolve into water; yet will the efflux of the water remain, as to its velocity, the fame as before. It will not be lefs, becaufe the ice now diffolved will endeavour to defcend ; it will not be greater, becaufe the ice now become water cannot defeend without hindering the defcent of other water equal to its own defcent. The fame force ought always to generate the fame velocity in the effluent water.

But the hole at the bottom of the veffel, by reafon of the oblique motions of the particles of the effluent water, muft be a little greater than before. For now the particles of the water do not all of them pafs thro' the hole perpendicularly; but flowing down on all parts from the fides of the veffel, and converging towards the hole, pafs thro' it with oblique motions; and in tending downwards meet in a ftream whofe diameter is a little fmaller below the hole than at the hole itfelf, its diameter being to the diameter of the hole as 5 to σ, or as $5 \frac{1}{2}$ to $\sigma \frac{1}{2}$, very nearly, if I took the meafures of thofe diameters right. I procured a very thin flat plate having a hole pierced in the middle, the diameter of the circular hole being $\frac{2}{8}$ parts of an inch. And that the ftream of running water might not be accelerated in falling, and by that acceleration become narrower, I fixed this plate, not to the bottom, but to the fide of the veffel, fo as to make the water go out in the direction of a line parallel to the horizon. Then when the veffel was full of water, I opened the hole to let it run out; and the diameter of the ftream, meafured with great accuracy at the diftance of about half an inch from the hole, was $\frac{21}{40}$ of an inch. Therefore the diameter of this circular hole was to the diameter of the fream very nearly as 2ρ to 2 I . So that the water in paffing thro' the hole, converges on all fides, and after ir has run out of the veffel, becomes finaller by converging in that manner, and by becoming fmaller is accelerated till it comes to the diftance of half an inch from the hole, and at that diftance flows in a fmaller ftream and with greater celerity than in the hole itfelf, and this in the ratio of 25×25 to 21×21 or 17 to 12 very nearly, that is, in about the fubduplicate ratio of 2 to 1. Now it is certain from experiments, that the quantity of water, running out in a given time thro' a circular hole made in the bottom of a veffel is equal to the quantity, which, flowing with the aforefaid velo-

Sect. VII. of Natural Philofophy. 127
city, would run out in the fame time, thro' another circular hole, whofe diameter is to the diameter of the former as 21 to 25 . And therefore that running water in paffing thro' the hole itfelf has a velocity downwards equal to that which a heavy body would acquire in falling thro' half the height of the ftagnant water in the veffel, nearly. But then after it has run our, it is ftill accelerated by converging, till it arrives at a diftance from the hole that is nearly equal to its diameter, and acquires a velocity greater than the other in about the fubduplicate ratio of 2 to I ; which velocity a heavy body would nearly acquire, by falling thro' the whole height of the ftagnant water in the veffel.

Therefore in what follows let the diameter of the fream be reprefented by that leffer hole which we called $E F$. And imagine another plane V / W above the hole $E F$, (Pl. 7. Fig. 3.) and parallel to the plane thereof, to be placed at a diftance equal to the diameter of the fame hole, and to be pierced thro' with a greater hole $S T$, of fuch a magnitude that a ftream which will exactly fill the lower hole $E F$ may pafs thro' it ; the diameter of which hole will therefore be to the diameter of the lower hole as 25 to 2 F , nearly. By this means the water will run perpendicularly out at the lower hole ; and the quantity of the water running out will be, according to the magnitude of this laft hole, the fame, very nearly, which the folution of the problem requires. The fpace included between the two planes and the falling ftream may be confider'd as the bottom of the veffel. But to make the folution more fimple and mathematical, it is better to take the lower plane alone for the bottom of the veffel, and to fuppofe that the water which flowed thro' the ice as thro' a funnel, and ran out of the veffel thro' the hole $E F$ made in the lower plane, preferves its motion continually, and that the ice continues at reft. Therefore in what follows let $S T$ be the diameter of a circular hole defcribed from the centre Z, and let the fream run out
of the veffel thro' that hole when the water in the veffel is all fluid. And let $E F$ be the diameter of the hole which the ftream, in falling thro', exactly fills up, whether the water runs out of the veffel by that upper hole $S T$, or flows thro' the middle of the ice in the veffel, as thro' a funnel. And let the diameter of the upper hole $S T$ be to the diameter of the lower $E F$ as about 25 to 21 , and lee the perpendicular diftance between the planes of the holes be equal to the diameter of the leffer hole $E F$: Then the velocity of the water downwards in running out of the veffel thro' the hole $S T$, will be in that hole the fame that a body may acquire by falling from half the height $I Z$: and the velocity of both the falling ftreams will be, in the hole $E F$, the fame which a body would acquire by falling from the whole height $I G$.

CASE 2. If the hole $E F$ be not in the middle of the bottom of the veffel, but in fome other part thereof, the water will ltill run out with the fame velocity as before, if the magnitude of the hole be the fame. For tho an heavy body takes a longer time in defcending to the fame depth, by an oblique line, than by a perpendicular line ; yet in both cafes it acquires in its defcent the fame velocity, as Galileo has demonftrared.

Case 3. The ve.ocity of the water is the fame when it runs out thro' a hole in the fide of the veffel. For if the hole be fmall, fo that the interval between the fuperficies $A B$ and $K L$ may vaiih as to fenfe, and the ftream of water horizontally iffuing out may form a parabolic figure: from the latus rectum of this parabola may be collected, that the velocity of the effluent water is that which a body may acquire by falling the height $I G$ or $H G$ of the ftagnant water in the veffel. For by making an experiment, I found that if the height of the fagnant water above the hole were 20 inches, and the height
height of the hole above a plane parallel to the horizon were alfo 20 inches, a ftream of water fpringing out from thence would fall upon the plane, at the diftance of 37 inches, very nearly, from a perpendicular let fall upon that plane from the hole. For without refiftance the ftream would have fallen upon the plane at the dif. tance of 40 inches, the latus requm of the parabolic ftream being 80 inches.

CASE 4. If the effluent water tend upwards, it will fill iffue forth with the fame velocity. For the fmall ftream of water fpringing upwards, afcends with a perpendicular motion to $G H$ or $G I$ the height of the ftagnant water in the veffel; excepting in fo far as its afcent is hindered a little by the refiftance of the air; and therefore it fprings out with the fame velocity that it would acquire in falling from that height. Every particle of the ftagnant water is equally preffed on all fides, (by Prop. 19. Book 2.) and yielding to the preffure, tends all ways with an equal force, whether it defcends thro' the hole in the bottom of the veffel, or gufhes out in an horizontal direction thro' an hole in the fide, or paffes into a canal, and fprings up from thence thro' a little hole made in the upper part of the canal. And it may not only be collected from reafoning, but is manifeft alfo from the well-known experiments juft mentioned, that the velocity with which the water runs out is the very fame that is affigned in this Propofition.

Case 5. The velocity of the effluent water is the fame, whether the figure of the hole be circular, or fquare, or triangular, or any other figure equal to the circular. For the velocity of the effluent water does not depend upon the figure of the hole, but atifes from its depth below the plane $K L$.

Case 6: If the lower part of the veffel $A B D C$ be immerfed into flagnant water, and the height of the flagnant water above the bottom of the veffel be $G R$; the velocity with which the water that is in the veffel Voz. II.
and $E F$ to the fum of the fame circles, (by Cor. 4•) and the weight of the whole water in the veffel is $\mathbf{\varepsilon}$ the weight of the whole water perpendicularly incumbent on the bottom as the circle $A B$ to the difference of the circles $A B$ and $E F$. Therefore, ex aquo perturbate, that part of the weight which preffes upon the bottom is to the weight of the whole water perpendicularly incumbent thereon as the circle $A B$ to the fums of the circles $A B$ and $E F$, or the excefs of twice the circle $A B$ above the bottom.

Cor. 7. If in the middle of the hole $E F$ there be placed the little circle $P Q$ defcribed about the centre G, and parallel to the horizon; the weight of water which that little circle fuftains is greater than the weight of a third part of a cylinder of water whofe bafe is that little circle and its height $G H$. For let $A B N F E M L$ (Pl. 7. Fig. 4.) be the cataract or column of falling water whofe axis is $G H$ as above, and let all the water, whofe fluidity is not requifite for the ready and quick defcent of the water, be fuppofed to be congealed; as well round about the cataract, as above the little circle, And let $P H Q$ be the column of water, congealed above the little circle, whofe vertex is H, and its altitude G H. And fuppofe this cataract to fall with its whole weight downwards, and not in the leaft to lie againft or to prefs $P H Q$, but to glide freely by it without any friction, unlefs perhaps juft at the very vertex of the ice where the cataratt at the beginning of its fall may tends to a concave figure. And as the congealed water $A M E C, B N F D$ lying round the cataract, is convex in its internal fuperficies $A M E, B N F$ towards the falling cataract, fo this column $P H Q$ will be convex towards the cataract alfo, and will therefore be greater than a cone whole bafe is that little circle $P Q$ and its altitude $G H$, that is, greater than a third part of a cylinder defrribed with the fame bafe and altirude. Now that little circle fuftains the weight of this column,
that is, a weight greater than the weight of the cone or a third part of the cylinder.

Cor. 8. The weight of water which the circle $P Q$, when very fmall, fuftains, feems to be lefs than the weight of two thirds of a cylinder of water whofe bate is that little circle, and its altitude $H G$. For, things ftanding as above fuppofed, imagine the half of a fphxroid defcribed whofe bafe is that little circle, and its femi-axis or alitude $H G$. This figure will be equal to two thirds of that cylinder, and will comprehend within it the column of congealed water $P H Q$, the weight of which is fuftained by that little circle. For tho' the motion of the water tends directly downwards, the external fuperficies of that column mult yet meet the bafe $P Q$ in an angle fomewhat acute, becaufe the water in its fall is perpetually accelerated, and by reafon of that acceleration becomes narrower. Therefore, fince that angle is lefs than a right one, this column in the lower parts thereof will lie within the hemi-fphæroid. In the upper parts alfo it will be agute or pointed; becaufe, to make it otherwife, the horizontal motion of the water muft be at the vertex infinitely more fwift than its motion towards the horizon. And the lefs this circle $P O$ is, the more acute will the vertex of this column be; and the circle being diminifhed in infinitum, the angle $P H O$ will be diminifhed in infinitum, and therefore the column will lie within the hemi-fphxroid. Therefore that column is lefs than that hemi-sphæroid, or than two third parts of the cylinder whofe bafe is that little circle, and its altitude $G H$. Now the little circle fuftains a force of water equal to the weight of this column, the weight of the ambient water being employed in caufing its efflux out at the hole.

Cor. 9. The weight of water which the little circle $P Q$ fuftains when it is very fmall, is very nearly equal to the weight of a cylinder of water whofe bafe is that little circle, and its altitude $\frac{1}{2} G H$. For this weight is and the hemi-fphrroid abovementioned. But if that little circle be not very fmall, but on the contrary increafed till it be equal to the hole $E F$; is will fuftain the weight of all the water lying perpendicularly above it, that is, the weight of a cylinder of water whofe bafe is that little circle and its altitude $G H$.

Cor. 10. And (as far as I can judge) the weight which this little circle fuftains is always to the weighe of a cylinder of water whofe bafe is that little circle and its altitude $\frac{1}{2} G H$, as $E F^{2}$ to $E F^{2}-\frac{1}{2} P Q^{2}$, or as the circle $E F$ to the excefs of this circle above half the little circle $P Q$, very nearly.

Lemma IV.

If a cylinder move uniformly forwards in the direction of its length, the refiftance made. thereto is not at all changed by augmenting or diminiffing that length; and is therefore the fame with the refiftance of a circle, defcribed with the fame diameter, and moving forwards with the fame velocity in the direction of a right line perpendicular to its plane.

For the fides are not at all oppofed to the motion; and a cylinder becomes a circle when its length is diminifhed in infinitum.

Prow

Proposition XXXVII.Theorem XXIX.

 If a cylinder move uniformly forwards in a com. preffed, infinite, and non-elaftic fluid, in the direction of its length; the refiftance arifing from the magnitude of its tranfverse fection, is to the force by which its whole motion may be deftroyed or generated, in the time that it moves four times its length, as the denfity of the medium to the denfity of the cylinder, nearly.For let the veffel $A B D C$ (Pl. 7. Fig. 5.) touch the furface of ftagnant water with its bottom $C D$, and let the water run out of this veffel into the ftagnant water thro' the cylindric canal EFTS perpendicular to the horizon ; and let the little circle $P Q$ be placed parallel to the horizon any where in the middle of the canal ; and produce $C A$ to K, fo that $A K$ may be to $C K$ in the duplicate of the ratio, which the excefs of the orifice of the canal $E F$ above the little circle $P O$, bears to the circle $A B$. Then 'tis manifeft (by Cafe 5 . Cafe 6 . and Cor. I. Prop. 36.) that the velocity of the water paffing thro' the annular fpace between the little circle and the fides of the veffel, will be the very fame which the water would acquire by falling, and in its fall defrribing the altitude $K C$ or $I G$.

And (by Cor. 10. Prop. 36.) if the breadth of the veffel be infinite, fo that the lineola $H I$ may vanith, and the altitudes $I G, H G$ become equal ; the force of the water that flows down, and preffes upon the circle will be to the weight of a cylinder whofe bafe is that little circle and the altitude $\frac{1}{2} I G$, as $E F^{2}$ to $E F^{2}-\frac{1}{2} P O^{2}$ very nearly. For the force of the water flowing downwards uniformly thro' the whole

$$
\mathrm{K}_{4} \quad \text { canal }
$$ whatfoever part of the canal it be placed.

Let now the orifices of the canal $E F, S T$ be clofed, and let the little circle afcend in the fluid compreffed on every fide, and by its afcent let it oblige the water that lies above it to defcend thro' the annular face bet wecn the little circle and the fides of the canal. Then will the velocity of the afcending little circle be to the velocity of the defcending water as the difference of the circles $E F$ and $P Q$ is to the circle $P Q$; and the velocity of the afending little circle will be to the fum of the velocities, that is, to the relative velocity of the defcending water with which it paffes by the little circle in its afcent, as the difference of the circles $E F$ and $P Q$ to the circle $E F$, or as $E F^{2}-P Q^{2}$ to $E F^{2}$. Let that relative velocity be equal to the velocity with which it was fhewn above that the water would pafs thio' the annular space if the circle were to remain unmoved, that is, to the velocity which the water would acquire by falling, and in its fall defribing the altitude $I G$; and the force of the water upon the afcending circle will be the fame as before, (by cor. 5. of the laws of motion) that is, the refiftance of the afcendirg little circle will be to the weight of a cylinder of water whofe bafe is that little circle and its altitude $\frac{2}{2} I G$, as $E F^{3}$ to $E F^{2}-\frac{1}{2} P O^{2}$ nearly. But the velocity of the little circle will be to the velocity which the water acquires by falling, and in its fall defcribing the altitude $I G$, as $E F^{2}-P Q^{2}$ to $E F^{2}$.

Let the breadth of the canal be increafed in infinitum; and the ratio's between $E F^{2}-P Q^{2}$ and $E F^{2}$, and between $E F^{2}$ and $E F^{2}-\frac{1}{2} P Q^{2}$ will become at j_{2} ft ratio's of equality. And therefore the velocity of the little circle will now be the fame which the water would acquire in falling, and in its fall defcribing the altitude $I G$; and the refiftance will become equal to the weight of a cylinder whofe bafe is that little circle,
and its altitude half the altitude $I G$, from which the cylinder muft fall to acquire the velocity of the afcending circle. And with this velocity the cylinder in the time of its fall will defcribe four times its length. But the refiftance of the cylinder moving forwards with this velocity in the direction of its length, is the fame with the refiftance of the little circle, (by Lem. 4.) and is therefore nearly equal to the force by which its motion may be generated while it defcribes four times its length.
If the length of the cylinder be augmented or diminifhed, its motion, and the time in which it defribes four times its length, will be augmented or diminifhed in the fame ratio; and, therefore the force by which the motion, fo increafed or diminifhed, may be deftroyed or generated, will continue the fame; becaufe the time is increafed or diminifhed in the fame proportion : and therefore that force remains ftill equal to the refiftance of the cylinder, becaufe (by Lem. 4.) that refiftance will alfo remain the fame.

If the denfity of the cylinder be augmented or diminifhed, its motion, and the force by which its motion may be generated or deftroyed in the fame time, will be augmented or diminifhed in the fame ratio. Therefore the reffiftance of any cylinder whatfoever will be to the force by which its whole motion may be generated or deftroyed in the time during which it moves four times its length, as the denfity of the medium to the denfity of the cylinder, nearly. O.E.D.
A fluid muft be compreffed to become continued; it muft be continued and non-elaftic, that all the preflure arifing from its compreffion may be propagated in an inftant ; and fo acting equally upon all parts of the body moved, may produce no change of the refiftance. The preffure arifing from the motion of the body is fpent in generating a motion in the parts of the fluid, and this creates the refiftance. But the preffure arifing from
from the compreffion of the fluid, be it never fo forcible, if it be propagated in an inftant, generates no motion in the parts of a continued fluid, produces no change at all of motion therein; and therefore neither augments nor leffens the refiftance. This is certain, that the action of the fluid arifing from the compreffion cannot be ftronger on the hinder parts of the body moved than on its fore parts, and therefore cannot leffen the refiftance defribed in this Propofition. And if its propagation be infinitely fwifter than the motion of the body preffed, it will not be ftronger on the fore parts than on the hinder parts. But that action will be infinitely fwifter and propagated in an inftant, if the fluid be continued and non-elaftic.

Cor. I. The refiffances made to cylinders going uniformly forwards in the direction of their lengths thro ${ }^{\circ}$ continued infinite mediums, are in a ratio compounded of the duplicate ratio of the velocities and the duplicate ratio of the diameters, and the ratio of the denfity of the mediums.

Cor. 2. If the breadth of the canal be not infinitely increafed, but the cylinder go forwards in the direction of its length through an included quiefcent medium, its axis all the while coinciding with the axis of the canal ; its refiftance will be to the force by which its whole motion in the time in which it defrribes four times its length, may be generated or deftroyed, in a ratio compounded of the ratio of $E F^{2}$ to $E F^{2}-\frac{1}{2} P Q^{21}$ once, and the ratio of $E F^{2}$ to $E F^{2}-P Q^{2}$ twice, and the ratio of the denfity of the medium to the denfity of the cylinder.

Cor. 3 . The fame things fuppofed, and that a length L is to the quadruple of the length of the cylinder in a ratio compounded of the ratio $E F^{2}-\frac{1}{2} P Q^{2}$ to $E F^{2}$ once, and the ratio of $E F^{2}-P Q^{2}$ to $E F^{2}$ twice; the refiftance of the cylinder will be to the force by which its whole motion, in the time during which it defrribes

Sect. VII. of Natural Philofophy. the length L, may be deftroyed or generated, as the denfity of the medium to the denfity of the cylinder.

Scholium.

In this propofition we have inveftigated that refiftance alone which arifes from the magnitude of the tranfverfe fection of the cylinder, neglecting that part of the fame which may arife from the obliquity of the motions, For as in Cafe 1. of Prop. 36. the obliquity of the motions with which the parts of the water in the veffel converged on every fide to the hole $E F$, hindered the efflux of the water thro' the hole; fo in this propofition, the obliquity of the motions, with which the parts of the water, preffed by the antecedent extremity of the cylinder, yield to the preffure and diverge on all fides, retards their paffage, thro' the places that lie round that antecedent extremity, towards the hinder parts of the cylinder, and caufes the fluid to be moved to a greater diftance; which increafes the refiftance, and that in the fame ratio almoft in which it diminifhed the efflux of the water out of the veffel, that is, in the duplicate ratio of 25 to 21 , nearly. And as in Cafe 1. of that Propofition, we made the parts of the water pafs thro' the hole $E F$ perpendicularly and in the greateft plenty, by fuppofing all the water in the veffel lying round the catazact to be frozen, and that part of the water whofe motion was oblique and ufelefs to remain without motion; fo in this propofition, that the obliquity of the motions may be taken away, and the parts of the water may give the freeft pafflage to the cylinder, by yielding to it with the moft direat and quick motion poffible, fo that only fo much refiftance may remain as arifes from the magnitude of the tranfverfe fection, and which is incapable of diminution, unlefs by diminifhing the diameter of the cylinder; we muft conceive thofe parts of the fluid whofe motions
are oblique and ufelefs, and produce refiftance, to be at reft among themfelves at both extremities of the cylinder, and there to cohere, and be joined to the cylinder. Let $A B C D$ (Pl. 7. Fig. 6.) be a rectangle, and let $A E$ and $B E$ be two parabolic arcs, defcribed with the axis $A B$, and with a latus rectum that is to the fpace $H G$, which muft be defcribed by the cylinder in falling in order to acquire the velocity with which it moves, as $H G$ to $\frac{1}{2} A B$. Let $C F$ and $D F$ be two other parabolic arcs defrribed with the axis $C D$, and a latus rectum quadruple of the former ; and by the convolution of the figure about the axis $E F$ let there be generated a folid, whofe middle part $A B D C$ is the cylinder we are here fpeaking of, and the extreme parts $A B E$ and $C D F$ contain the parts of the fluid, at reft among themelves, and concreted into two hard bodies, adhering to the cylinder at each end like a head and tail. Then if this folid EACFDB move in the direction of the length of its axis $F E$ towards the parts beyond E, the refiftance will be the fame which we have here determined in this propofition, nearly ; that is, it will have the fame ratio to the force with which the whole motion of the cylinder may be deftroyed or generated in the time that it is defcribing the length $4 A C$ with that motion uniformly continued, as the denfity of the fluid has to the denfity of the cylinder, nearly. And (by Cor. 7. Prop. 36.) the refiftance muft be to this force in the ratio of 2 to 3, at the leaft.

Lemma

Sect．VII．of Natural Philofophy：

Lemma V．

If a cylinder，a sphere，and a Spharoid，of equal breadths be placed fucceffively in the middle of a cylindric canal，fo that their axes may coincide with the axis of the canal；thefe bo－ dies will equally binder the palfage of the water thro the canal．
For the fpaces，lying between the fides of the canal， and the cylinder，Sphere，and fphæroid，thro＇which the water paffes，are equal；and the water will pafs e－ qually thro＇equal fpaces．

This is true upon the fuppofition that all the water above the cylinder，fphere，or fphxroid，whofe fluidity is not neceffary to make the paffage of the water the quickeft poffible，is congealed，as was explained above in Cor．7．Prop． 36.

Lemma VI．

The fame fuppofition remaining，the foremen： tioned bodies are equally acted on by the wa－ ter flowing thro＇the canal．
This appears by Lem．5．and the third law．For the water and the bodies act upon each other mutually， and equally．

Lemma VII．

If the water be at reft in the canal，and thefe bodies move with equal velocity and the con－ trary way thro the canal，their refiftances will be equal among themfelves．
This appears from the laft Lemma，for the relative motions remain the fame among themfelves．

Scholivm.

The care is the fame of all convex and round bodies.: whofe axes coincide with the axis of the canal. Some difference may arife from a greater or lefs frittion; but in thefe lemmata we fuppofe the bodies to be perfectly fmooth, and the medium to be void of all renacisy and friction ; and that thofe parts of the fluid which by their oblique and fuperfluous motions may difturb, hinder, and retard the flux of the water thro' the canal, are at reft amongft themfelves; being fixed like water by froft, and adhering to the fore and hinder parts of the bodies in the manner explained in the Scholium of the laft Propofition. For in what follows, we confider the very leaft refiftance that round bodies deferibed with the greateft given tranfverfe feqtions can poffibly meet with.

Bodies fwimming upon fluids, when they move ftraight forwards, caufe the fluid to afcend at their fore parts and fubfide at their hinder parts, efpecially if they are of an obtufe figure ; and thence they meet with a little more refiftance than if they were acute at the head and tail. And bodies moving in elaftic fluids, if they are obtufe behind and before, condenfe the fluid a little more at their fore parts, and relax the fame at their hinder parts; and therefore meet alfo with a little more refiftance than if they were acure at the head and tail. But in thefe lemma's and propofitions we are not treating of elaftic, but non-elaftic fluids; not of bodies floating on the furface of the fluid, but deeply immerfed therein. And when the refiftance of bodies in non-claftic fluids is once known, we may then augment this refiftance a little in elaftic fluids, as our air; and in the furfaces of ftagnating fluids, as lakes and feas.

Proposition XXXVIII. Theorem XXX.

If a globe move uniformly forward in a compreffed, infinite, and non-elaftic fluid, its refiftance is to the force by which its whole motion may be deffroyed or generated in the time that it defcribes eight third parts of its diameter, as the denjty of the fluid to the denfity of the globe, very nearly.

For the globe is to its circumfcribed cylinder as two to three; and therefore the force which can deftroy all the motion of the cylinder while the fame cylinder is defcribing the length of four of its diameters, will defroy all the motion of the globe while the globe is defrribing two thirds of this length, that is, eight third parts of its own diameter. Now the refiftance of the cylinder is to this force very nearly as the denfity of the fluid to the denfity of the cylinder or globe (by Prop.37.) and the refiftance of the globe is equal to the refiftance of the cylinder (by Lem. 5, 6, 7.) 2:E.D.
Cor. i. The refiftances of globes in infinite compreffed mediums are in a ratio compounded of the duplicate ratio of the velocity, and the duplicate ratio of the diameter, and the ratio of the denfity of the mediums.
Cor. 2. The greateft velocity with which a globe can defcend by its comparative weight thro' a refifting fluid, is the fame which it may acquire by falling with the fame weight, and without any refiftance, and in its fall defribing a fpace that is to four third parts of its diameter, as the denfity of the globe to the denfity of the fluid. For the globe in the time of its fall, moving with the velocity acquired in falling, will defcribe a fpace
fpace that will be to eight third parts of its diameter as the denfity of the globe to the denfity of the fluid; and the force of its weight which generates this motion, will be to the force that can generate the fame motion in the time that the globe defrribes eight third parts of its diameter, with the fame velocity as the denfity of the fluid to the denfity of the globe; and therefore (by this Propofition) the force of weight will be equal to the force of refiftance, and therefore cannot accelerate the globe.

Cor. 3. If there be given both the denfity of the globe and its velocity at the beginning of the motion, and the denfity of the compreffed quiefcent fluid in which the globe moves; there is given at any time both the velocity of the globe and its refiftance, and the fpace defcribed by it, (by Cor. 7. Prop. 35.)

Cor. 4. A globe moving in a compreffed quiefcent fluid of the fame denfity with itfelf, will lofe half its motion before it can defcribe the length of t wo of its. diameters, (by the fame Cor. 7.)

Proposition XXXIX. Theorem XXXI.

 If a globe move uniformly forward thro' a fluid inclofed and compreffed in a cylindric canal, its refiftance is to the force by which its whole motion may be generated or deftroyed in the time in which it defcribes eight third parts of its diameter, in a ratio compounded of the ratio of the orifice of the canal, to the excess of that orifice above half the greateft circle of the globe; and the duplicate ratio of the orifice of the canal, to the excefs of that orifice above the greateft circle of the globe; and the ratio of the denfity of the fluid 10 the denfity of the globe, nearly.Buṭ

Set. ViI. of Natural Pbillofophy:
This appears by cor. 2. prop. 37. and the demonfration proceeds in the fame manner as in the foregoing propofition.

Scholium.

In the two laft propofitions we fuppofe (as was done before in lem. 5.) that all the warer which precedes the globe, and whofe fuidity increafes the refiftance of the lame, is congealed. Now if that water becomes fluid, it will fomewhat increafe the refiftance. But in thefe propofitions that increafe is fo fmall, that it may be regletted, becaufe the convex fuperficies of the globe produces the very fame effect almoft as the congelation of the water:

Proposition XLL. Problem IX.

To find by phenomiena the refiftance of a globe moving through a perfectly fuid compreffed medium.

Let A be the weight of the globe in vacuo, B its weight in the refifting medium, D the diameter of the globe, F a fpace which is to $\frac{4}{3} \mathrm{D}$ as the denfity of the globe to the denfity of the medium, that is, as A to $\mathrm{A}-\mathrm{B}, \mathrm{G}$ the time in which the globe falling with the weight B without refiftance defcribes the 1 pace F , and H the velocity which the body acquires by that fall. Then H will be the greateft velocity with which the globe can polfibly defcend with the weight B in the refifting medium, by cor. 2. prop 38 ; and the refiftance which the globe meers with, when defcending with that velocity, will be equal to its weight B : and the refiftance it meets with, in any other velocity, will be to the weight B in the duplicate ratio of that velocity to the greateft velocity H , by cor. 1. prop. 38.
Voi. II.

This is the refiftance that arifes from the inativity of the matter of the fluid. That refiftance which arifes from the elafticity, tenacity, and friction of its parts, may be thus inveftigated.

Let the globe be let fall fo that it may difcend in the fluid by the weight B; and let P be the time of falling, and let that time be expreffed in feconds, if the time G be given in feconds. Find the abfolute Number N agreeing to the logarithm $0,4342944819^{2} \mathrm{P}$, and let L be the logarithm of the number $\frac{N-1-1}{N}$: and the velocity acquir'd in falling will be $\frac{\mathrm{N}-\mathrm{I}}{\mathrm{N}-\mathrm{I}} \mathrm{H}$, and the height defcribed will be $\frac{2 P F}{G}-1,386294361$ IF - $4,605170186 \mathrm{LF}$. If the fluid be of a fufficient depth, we may neglect the term 4,605170186LF; and $\frac{2 \mathrm{PF}}{\mathrm{G}}-1,38629436_{11} \mathrm{~F}$ will be the altitude defcribed, nearly. Thefe things appear by prop. 9 . book 2. and its corollaries, and are true upon this fuppofition, that the globe meers with no other refiffance but that which arifes from the inactivity of matter. Now if it really meet with any refiftance of another kind, the defcent will be flower, and from the quantity of that retardation will be known the quantity of this new refiftance.

That the velocity and defcent of a body falling in a fluid might more eafily be known, I have compofed the following table; the firft column of which denotes the times of defcent, the fecond fhews the velocities acquir'd in falling, the greateft velocity being 100000000 , the third exhibits the fpaces defrribed by falling in thofe times, 2 F being the fpace which the body de. fribes in the time G with the greateft velocity,

Sect. VII. of Natural Pbilofophy. 147 and the fourth gives the fpaces defcribed with the greateft velocity in the fame times. The numbers in the fourth column are $\frac{2 \mathrm{P}}{\mathrm{G}}$, and by fubducting the number $1,3862944-4,6051702 \mathrm{~L}$, are found the numbers in the third column; and thefe numbers mult be multiplied by the fpace \mathbf{F} to obtain the fpaces defcribed in falling. A fifth column is added to all thefe, containing the fpaces defcribed in the fame times by a body falling in vacuo with the force of B its comparative weight.

Tine Times	Velocities of the body falling in the fluid.	The fpaces defaribed in falling in the finid.		The fpaces defuribed by falling in vatwo.
$\begin{aligned} & 0,001 \mathrm{G} \\ & 0,01 \mathrm{G} \end{aligned}$	$\begin{aligned} & 99999 \cdot \frac{2}{30} 9 \\ & 999967 \end{aligned}$	$\begin{aligned} & 0,00000 \text { I } \mathrm{F} \\ & 0,000 \text { I } \end{aligned}$	$\begin{aligned} & 0,002 \mathrm{~F} \\ & 0,02 \mathrm{~F} \end{aligned}$	0,00000 IF 0,000 F
$0,1 \mathrm{G}$	9966799	0,0099834 ${ }^{\text {F }}$	0,2F	0,01F
0,2G	19737532	0,0397361F	$0,4 \mathrm{~F}$	0,04F
0,3G	29131261	0,0886815 5	0,6F	0,09F
$0,4 \mathrm{G}$	37994896	0,1559070F	0, 8 F	$0,16 \mathrm{~F}$
0,5G	46211716	$0,2402290 \mathrm{~F}$	${ }_{1}, \mathrm{oF}$	$0,25 \mathrm{~F}$
0,6G	53704957	$0,3402706 \mathrm{~F}$	1,2F	0,36F
0,7G	60436778	0,4545405 F	1,4F	0,49F
0,8G	66403677	0,5815071F	1,6F	$0,64 \mathrm{~F}$
0,9G	71629787	0,7196609F	1,8F	0,81F
IG	76159416	$0,8675617{ }^{\text {F }}$	2 F	${ }_{1}$
2G	96402758	2,6500055 ${ }^{\text {F }}$	4 F	$4{ }^{\text {F }}$
${ }_{3} \mathrm{G}$	99505475	4,6186570 ${ }^{\text {F }}$	6 F	9 F
4G	99932930	6,614376; ${ }^{\text {F }}$	8 F	16 F
${ }_{5} \mathrm{G}$	99990920	8,6137964 ${ }^{\text {F }}$: 0 F	${ }_{25} \mathrm{~F}$
6G	99998771	10,6137179F	12 F	36 F
${ }^{7} \mathrm{G}$	99999834	12,6137073F	14 F	49 F
8 G	99999980	14,6137059F	16 F	64 F
${ }_{9}{ }^{\text {G }}$	99999997	16,6137057	18 F	$8{ }^{1} \mathrm{~F}$
10 G	999999993	18,6137056F	20F	-0

Scholivm。

In order to inveftigate the refiftances of fluids from experiments, l procured a fquare wooden veffel, whofe length and breadth on the infide was 9 inches Englifb meafure, and its depth 9 foot $\frac{1}{2}$; this I filled with rain-water: and having provided globes made up of wax, and lead included therein, I noted the times of the defcents of thefe globes, the height through which they defcended being 112 inches. A folid cubic foot of Englijh meafure contains 7^{6} pounds Troy weight of rain-water; and a folid inch contains $\frac{12}{3} \frac{2}{6}$ ounces Troy weight or $253 \frac{4}{3}$ grains; and a globe of water of one inch in diameter contains 132,645 grains in air, or 132,8 grains in vacuo; and any other globe will be as the excefs of its weight in vacuo above its weight in water.

Exper. I. A globe whofe weight was $196 \frac{1}{4}$ grains in air, and 77 grains in water, defcribed the whole height of 112 inches in 4 feconds. And, upon repeating the experiment, the globe fpent again the very fame time of 4 feconds in falling.

The weight of this globe in vacuo is $156 \frac{13}{3} \frac{3}{8}$ grains; and excefs of this weight above the weight of the globe in water is $79 \frac{13}{3}$ grains. Hence the diameter of the globe appears to be 0,84224 parts of an inch. Then it will be, as that excefs to the weight of the globe in vacuo, fo is the denfity of the water to the denfity of the globe; and fo is $\frac{8}{3}$ parts of the diameter of the globe (viz. 2,24597 inches) to the fpace 2 F , which will be therefore 4,4256 inches. Now a globe falling in vacuo with its whole weight of $156 \frac{13}{3} \frac{1}{8}$ grains in one fecond of time will defribe $193 \frac{1}{3}$ inches; and falling in water in the fame time with the weight of 77 grains without refiftance, will defcribe 95,219 inches; and in the time G which is to one fecond of
time in the fubduplicate ratio of the fpace F , or of 2,2128 inches to 95,219 inches, will defcribe 2,2128 inches, and will acquire the greatelt velocity H with which it is capable of defcending in water. Therefore the time G is $0,{ }^{\prime \prime} 15244$. And in this time G with that greateft velocity H, the globe will defribe the fpace 2 F , which is 4,4256 inches; and therefore in 4 feconds will defrribe a fpace of 116,1245 inches. Subduct the fpace $1,3862944 \mathrm{~F}$ or 3,0676 inches, and there will remain a fpace of 113,0569 inches, which the globe falling thro' water in a very wide veffel will defrribe in 4 feconds. But this fpace, by reafon of the narrow nefs of the wooden veffel beforementioned, ought to be diminifhed in a ratio compounded of the fubduplicase ratio of the orifice of the veffel to the excefs of this orifice above half a great circle of the globe, and of the fimple ratio of the fame orifice to its excefs above a great circle of the globe, that is, in a ratio of 1 to 0,9914. This done, we have a fpace of 112,08 inches, which a globe falling thro' the water in this' wooden veffel in 4 feconds of time ought nearly to defrribe by this theory : but it defcribed 112 inches by the experiment.
Exper. 2. Three equal globes, whofe weights were feverally $76 \frac{1}{3}$ grains in air, and $5 \frac{1}{16}$ grains in water, were let fall fucceffively; and every one fell thro' the water in 15 feconds of time, defribing in its fall a height of 112 inches.

By computation, the weight of each globe in vacuo is $76 \frac{5}{12}$ grains; the excefs of this weight above the weight in water, is 71 grains $\frac{4}{4} \frac{7}{8}$; the diameter of the g.obe 0,81296 of an inch : $\frac{3}{3}$ parts of this diameter 2,16789 inches; the face 2 F is 2,3217 inches; the fpace which a globe of $5 \frac{2}{16}$ grains in weight would deferibe in one fecond without refiftance, 12,808 inches, and the time G o",301096. Therefore the globe with the greateft velocity it is capable of receiving
from a weight of $5 \frac{2}{16}$ grains in its defcent thro' water, will defcribe in the time 0 ", 301056 the fpace of 2,3217 inches; and in 15 feconds the fpace 115,678 inches. Subduct the fpace 1,3862944 F or 1,609 inches, and there remains the fpace 114,069 inches; which therefore the falling globe ought to defcribe in the fame time, if the veffel were very wide. But becaufe our veffel was narrow, the fpace ought to be diminifhed by about 0,895 of an inch. And fo the space will rcmain 113,174 inches, which a globe falling in this veffel ought nearly to defcribe in is feconds by the theory. But by the experiment it defcribed II2 inches. The difference is not fenfible.

Exper. 3. Three equal globes, whofe weights were Severally 121 grains in air, and I grain in water, were fucceffively ler fall; and they fell thro' the water in the times $46^{\prime \prime}, 47^{\prime \prime}$, and $50^{\prime \prime}$, defcribing a height of 112 inches.

By the theory thefe globes ought to have fallen in about $40^{\prime \prime}$. Now whether their falling more flowly were occafion'd from hence, that in flow motions the refiftance arifing from the force of inactivity, does really bear a lefs proportion to the refiftance arifing from other caufes; or whether it is to be attributed to little bubbles that might chance to ftick to the globes, or to the rarefaction of the wax by the warmth of the weather, or of the hand that let them fall; or, laftly, whether it proceeded from fome infenfible errors in weighing the globes in the water, I am not certain. Therefore the weight of the globe in water fhould be of feveral grains, that the experiment may be certain, and to be depended on.

Exper.4. I began the foregoing experiments to inveftigate the refiffances of fluids, before I was acquainted with the theory laid down in the propofitions immediately preceding. Afterwards, in order to examine the theory after it was difcovered, I procured a wooden
wooden veffel, whofe breadth on the infide was $8 \frac{2}{3}$ inches, and its depth 15 feet and $\frac{1}{3}$. Then I made four globes of wax, with lead included, each of which weighed $139 \frac{1}{4}$ grains in air, and $7 \frac{1}{\frac{1}{6}}$ grains in water. Thefe I let fall, meafuring the times of their falling in the water with a pendulum ofcillating to half feconds. The globes were cold, and had remained fo fome time, both when they were weighed and when they were let fall; becaufe warmth rarefies the wax, and by rarefying it diminifhes the weight of the globe in the water; and wax, when rarefied, is not inftantly reduced by cold to its former denfity. Before they were let fall, they were totally immerfed under water, left, by the weight of any part of them that might chance to be above the water, their defcent fhould be accelerated in its beginning. Then, when after their immerfion they were perfectly at reft, they were let go with the greateft care, that they might not receive any impulfe from the hand that let them down. And they fell fucceffively in the times of $47 \frac{1}{2}, 48 \frac{1}{2}$, 50 and 5 r ofcillations, defcribing a height of 15 feet and 2 inches. But the weather was now a little colder than when the globes were weighed, and therefore I repeated the experiment another day; and then the globes fell in the times of $49,49 \frac{1}{2}$, 50 and 53 ; and at a third trial in the times of $49 \frac{1}{2}, 50,51$ and 53 ofcillations. And by making the experiment feveral times over, I found that the globes fell moftly in the times of $49 \frac{1}{2}$ and so ofcillations. When they fell flower, I fufpect them to have been retarded by ftriking againft the fides of the veffel.

Now, computing from the theory, the weight of the globe in vacuo is $139 \frac{2}{5}$ grains. The excefs of this weight above the weight of the globe in water $132 \frac{110}{4}$ grains, the diameter of the globe 0,99868 of an inch, $\frac{8}{3}$ parts of the diameter 2,663 I5 inches, the fpace $2 \mathrm{~F}_{2,8066}$ inches, the fpace which a globe weighing $7 \frac{2}{8}$ grains falling without refiftance defcribes

152

 Mathematical Principles Book $\mathbf{I I}$. in a fecond of time 9,88164 inches, and the time Go",376843. Therefore the globe with the greatert velocity with which it is capable of defcending thro' the water by the force of a weight of $7 \frac{1}{8}$ grains will in the time $0^{\prime \prime}, 376843$ defribe a pace of 2,8066 inches, and in one fecond of time a fpace of 7,44766 inches, and in the time $25^{\prime \prime}$, or in 50 ofcillations the fpace 186,1915 inches. Subduct the fpace $1,386294 \mathrm{~F}$ or 1,9454 inches, and there will remain the fpace 184,246 inches, which the globe will defrribe in that time in a very wide veffel. Becaufe our veffel was narrow, let this fpace be diminifhed in a ratio compounded of the fubduplicate ratio of the orifice of the veffel to the excefs of this orifice above half a great circle of the globe, and of the fimple ratio of the fame orifice to its excefs above a great circle of the globe; and we fhall have the fpace of 181,86 inches, which the globe ought by the theory to defcribe in this veffel in the time of 50 ofcillations, nearly. But it defcribed the fpace of 182 inches, by experiment, in $49 \frac{1}{2}$ or 50 ofcillations.Ewper. 5. Four globes, weighing $154 \frac{1}{8}$ grains in air, and $21 \frac{1}{2}$ grains in water, being let fall feveral times, fell in the times of $28 \frac{1}{2}, 29,29 \frac{1}{2}$, and 30 , and fometimes of 31,32 , and 33 ofcillations, defrribing a height of 15 feet and 2 inches.

They ought by the theory to have fallen in the time of 29 orcilations, nearly.

Exper. 6. Five globes, weighing $212 \frac{3}{8}$ grains in air, and $79 \frac{1}{2}$ in water, being feveral times let fall, fell in the times of $15,15 \frac{1}{2}, 16,17$, and 18 ofcillations, defcribing a height of 15 feet and 2 inches.

By the theory they ought to have fallen in the time of 15 ofcillations, ncarly.

Exper. \uparrow. Four globes weighing $293 \frac{3}{8}$ grains in air, and 35 g ins $\frac{2}{8}$ in water, being let fall feveral fimes, fell in the times of $29 \frac{1}{2}, 30,30 \frac{1}{2}, 31,32$, and 33 ofcillations, defrribing a height of 15 feet and f inch and $\frac{1}{2}$.

By the theory they ought to have fallen in the time of 28 ofcillations, nearly.

In fearching for the caufe that occafioned thefe globes of the fame weight and magnitude to fall, fome fwifter and fome flower, I hit upon this; that the globes, when they were firft let go and began to fall, ofcillated about their centres, that fide which chanced to be the heavier defcending firft, and producing an ofcillating motion. Now by ofcillating thus, the globe communicates a greater motion to the water, than if it defcended without any ofcillations; and by this communication lofes part of its own motion with which it fhould deffend; and therefore as this ofcillation is greater or lefs it will be more or lefs retarded. Befides the globe always recedes from that fide of itfelf which is defcending in the ofcillation, and by fo receding comes nearer to the fides of the veffel fo as even to frike againft them fometimes. And the heavier the globes are, the ftronger this ofcillation is; and the greater they are, the more is the water agitated by it. Therefore to diminifh this ofcillation of the globes, I made new ones of lead and wax, fticking the lead in one fide of the globe very near its furface; and I let fall the globe in fuch a manner, that as near as poffible, the heavier fide might be loweft at the beginning of the defcent. By this means the ofcillations became much lefs than before, and the times in which the globes fell were not fo unequal : as in the following experiments.

Exper.8. Four globes weighing 139 grains in air and $\sigma \frac{1}{2}$ in water, were let fall feveral times, and fell moftly in the time of 5 I ofcillations, never in more than 52 , or in fewer than 50 ; defribing a height of 182 inches.

By the theory they ought to fall in about the time of 5_{2} of cillations.

Exper. 9. Four globes weighing $273 \frac{2}{4}$ grains in air, and $140 \frac{2}{4}$ in water, being feveral times let fall; fell in never fewer than 12, and never more than 13 ofcillations, defcribing a height of 182 inches.

Thefe globes by the theory ought to have fallen in the time of $1 \times \frac{1}{3}$ ofcillations, nearly.

Exper. 10 . Four globes, weighing 384 grains in air and $119 \frac{1}{2}$ in water, being let fall leveral times, fell in the times of $17 \frac{3}{4}, 18,18 \frac{1}{2}$, and 19 ofcillations, defcribing a height of $181 \frac{1}{2}$ inches. And when they fell in the time of 19 ofcillations, I fometimes heard them hit againft the fides of the veffel before they reached the bottom.

By the theory they ought to have fallen in the time of is $\frac{5}{9}$ ofcillations, nearly.

Exper. ir. Three equal globes, weighing 4δ grains in the air, and $3 \frac{2}{3} \frac{9}{2}$ in water, being feveral times let fall, fell in the times of $43 \frac{1}{2}, 44,44 \frac{1}{2}, 45$ and 46 ofcillations, and moltly in 44 and 45 , defcribing a height of 182 inches $\frac{1}{2}$, nearly.

By the theory they ought to have fallen in the time of 46 ofcillations and $\frac{2}{9}$, nearly.

Exper. 12 . Three equal globes, weighing 141 grains in air and $4 \frac{3}{8}$ in water, being let fall feveral times, fell in the times of $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$ and σ_{5} ofcillations, defcribing a fpace of 182 inches.

And by the theory they ought to have fallen in $64 \frac{2}{2}$ ofcillations, nearly.

From thefe experiments it is manifeft, that when the globes fell flowly, as in the fecond, fourth, fifth, eighth, eleventh, and twelfth experiments, the times of falling are rightly exhibited by the theory; but when the globes fell more fwiftly as in the fixth, ninth, and tenth experiments, the refiftance was fomewhat greater than in the duplicate ratio of the velocity. For the globes in falling ofcillate a little; and shis ofcillation, in thofe globes that are light and fall nowly, flowly, foon ceafes by the weaknefs of the motion; but in greater and heavier globes, the motion being ftrong, it continues longer; and is not to be checked by the ambient water, till after feveral ofcillations. Befides, the more fwiftly the globes move, the lefs are they preffed by the fluid at their hinder parts; and if the velocity be perpetually increafed, they will at latt leave an empty face behind them, unlefs the compreffion of the fluid be increafed at the fame time. For the compreffion of the fluid ought to be increafed (by Prop. 32 and 33.) in the duplicate ratio of the velocity, in order to preferve the refiffance in the fame duplicate ratio. But becaufe this is not done, the globes that move fwiftly are not fo much preffed at their hinder parts as the others; and by the defect of this preffure it comes to pafs that their reffiftance is a little greater than in a duplicate ratio of their velocity.

So that the theory agrees with the phrnomena of bodies falling in water; it remains that we examine the phxnomena of bodies falling in air.

Exper. i3. From the top of St. Paul's Church in Londor in June 7 10. there were let fall together two glafs globes, one full of quickfilver, the other of air; and in their fall they defcribed a height of 220 Englif) feet. A wooden table was fufpended upon iron hinges on one fide, and the other fide of the fame was fupported by a wooden pin. The two globes lying upon this table were ler fall together by pulling out the pin by means of an iron wire reaching from thence quite down to the ground; fo that, the pin being removed, the table, which had then no fupport but the iron hinges, fell downwards; and turning round upon the hinges, gave leave to the globes to drop off from it. At the fame inftant, with the fame pull of the iron wire that took out the pin, a pendulum of cillating to feconds was let go, and began to ofcillate. The diameters and weights
of the globes, and their times of falling, are exhibited in the following table.

The globes filled zoith mercury.			The globes full of air.		
Weights.	Diameters.	$\left.\begin{aligned} & \text { Times in } \\ & \text { falling. } \end{aligned} \right\rvert\,$	Weigbts.	Diamuters.	$\left\|\begin{array}{l} \text { Times in } \\ \text { falling } \end{array}\right\|$
708 Grains	0,8 of an incb	4 "	510 Grains	5,1 inches	
983	0,8	-	642	5,2	
	0,8		599	5,1	
747	0,75	4+	515	5,0	$8 \frac{1}{4}$
808	0,75		483	5,0	$8 \frac{7}{2}$
784	0,75	$4+$	541	5,2	

But the times obferved muft be corrected; for the globes of mercury (by Galileo's theory) in 4 feconds of time, will deficribe 257 Engli/b feet, and 220 feet in only $3^{\prime \prime} 42^{\prime \prime \prime}$. So that the wooden table, when the pin was taken out, did not turn upon its hinges fo quickly as it ought to have done; and the flownefs of that revolution hindered the defcent of the globes at the beginning. For the globes lay about the middle of the table, and indeed were rather nearer to the axis upon which it turned, than to the pin. And hence the times of falling were prolonged about $18^{\prime \prime \prime}$; and therefore ought to be corrected by fubducting that excefs, efpecially in the larger globes, which, by reafon of the largenefs of their diameters, lay longer upon the revolving table than the others. This being done, the times in which the fix larger globes fell, will come forth $8^{\prime \prime} 12^{\prime \prime \prime}, 7^{\prime \prime} 42^{\prime \prime \prime}, 7^{\prime \prime \prime} 42^{\prime \prime \prime}, 7^{\prime \prime} 57^{\prime \prime \prime}, 8^{\prime \prime} 12^{\prime \prime \prime}$, and $7{ }^{\prime \prime} 42^{\prime \prime \prime}$.

Therefore the fifth in order among the globes that were full of air, being 5 inches in diameter, and 483 grains in weight, fell in $8^{\prime \prime} 122^{\prime \prime}$, defrribing a fpace of 220 feet. The weight of a bulk of water equal to this globe is 16600 grains; and the weight of an equal bulk of air is $\frac{166500}{86}$ O grains, or 19 重 grains; and therefore the weight of the globe in vacuo is $502 \frac{1}{10}$ grains;
and this weight is to the weight of a bulk of air equal to the globe as $502 \frac{1}{10}$ to $19 \frac{1}{10}$, and fo is 2 F to $\frac{\pi}{3}$ of the diameter of the globe, that is, to $13 \frac{1}{3}$ inches. Whence 2 F becomes 28 feet 11 inches. A globe falling in vacuo with its whole weight of $502 \frac{1}{10}$ grains, will in one fecond of time defcribe $193 \frac{1}{3}$ inches as above ; and with the weight of 483 grains will defcribe 185,905 inches; and with that weight 483 grains in vacuo will defrribe the fpace F or 14 feet $5^{\frac{1}{2}}$ inches, in the time of $57^{\prime \prime \prime} 58^{\prime \prime \prime \prime \prime}$, and acquire the greateft velocity it is capable of defcending with in the air. With this velocity the globe in $8^{\prime \prime} 12^{\prime \prime \prime}$ of time will defcribe 245 feet and $5 \frac{x}{3}$ inches. Subduct $1,38 \sigma_{3} \mathrm{~F}$ or 20 feet and $\frac{1}{2}$ an inch, and there remain 225 feet 5 inches. This face therefore the falling globe ought by the theory to defaribe in $8^{\prime \prime} 12^{\prime \prime \prime}$. But by the experiment it defcribed a fpace of 220 feet. The difference is infenfible.

By like calculations applied to the other globes full of air, I compofed the following table.

The weights of the globes.	The diamesers.	The times of falling from a height of 220 foot.	The spaces would defor theory.	which the) ibe by the	The	Exceffos.
510 grains	5,1 inches	$8^{\prime \prime} 12^{\prime \prime \prime}$	226 foot	11 inshes	6 foot	11 inches
642		$7 \quad 42$	230	9	10	9
599	5,1	$7 \quad 42$	227	10	7	10
525	5	$7 \quad 57$	224	5	4	5
483	5	$8 \quad 12$	225	5	5	5
641	5,2	1742	230	7	10	7

Exper. 14. Anno 1719. in the month of Fuly, Dr. Defaguliers made fome experiments of this kind again, by forming hogs bladders into fphrrical orbs ; which was done by means of a concave wooden fphere, which the bladders, being wetted well firft, were put into. After that, being blown full of air, they were II
obliged
obliged to fill up the fpherical cavity that contained them ; and then, when dry, were taken out. There were let fall from the lantern on the top of the cupola of the fame church; namely, from a height of 272 feet; and at the fame moment of time there was let fall a leaden globe whofe weight was about 2 pounds Troy weight. And in the mean time fome perfons ftanding in the upper part of the church where the globes were let fall, obferved the whole times of falling ; and others ftanding on the ground obferved the differences of the times between the fall of the leaden weight, and the fall of the bladder. The times were meafured by pendulums ofcillating to half feconds. And one of thofe that flood upon the ground had a machine vibrating four times in one fecond; and another had another machine accurately made with a pendulum vibrating four times in a fecond alfo. One of thofe alfo who ftood at the top of the church had a like machine. And thefe inftruments were fo contrived, that their motions could be flopped or renewed at pleafure. Now the leaden globe fell in about four feconds and $\frac{1}{4}$ of time; and from the addition of this time to the difference of time above fpoken of, was collected the whole time in which the bladder was falling. The times which the five bladders fpent in falling after the leaden globe had reached the ground were the firft time, $144^{\frac{3}{4}}{ }^{\prime \prime}, 12 \frac{3_{4}^{\prime \prime}}{4}, 145^{\frac{5}{8}}{ }^{\prime \prime}, 17^{\frac{3^{\prime \prime}}{4}}$, and $16_{2^{\prime \prime}}^{\prime \prime}$; and the fecond time $14 \frac{\frac{1}{2}^{\prime \prime}}{}, 144^{\frac{117}{\prime \prime}}, 14^{\prime \prime}, 19^{\prime \prime}$ and $16_{4}^{\frac{3}{\prime \prime}}$. Add to thefe $4 \frac{1^{\prime \prime}}{4}$, the time in which the leaden globe was falling, and the whole times in which the five bladders fell, were, the firft time $19^{\prime \prime}, 17^{\prime \prime}, 188_{8}^{1 \prime \prime}$, $22^{\prime \prime}$ and $21 \frac{1^{\prime \prime}}{1^{\prime \prime}} ;$ and the fecond time, $18 \frac{3^{\prime \prime}}{4}, 18 \frac{1^{\prime \prime}}{}$, $18 \frac{1}{4}^{\prime \prime}$, $23 \frac{1}{1 \prime}^{\prime \prime}$ and $21^{\prime \prime}$. The times obferved at the top of the church were, the firft time, $19 \frac{3^{\prime \prime}}{8}, 17 \frac{\frac{1}{4}^{\prime \prime},}{} 18 \frac{3^{\prime \prime}}{4}, 22 \frac{1}{8}{ }^{\prime \prime}$ and $21 \frac{5 s^{\prime \prime}}{}$; and the fecond time, $19^{\prime \prime}, 18 \frac{5^{\prime \prime}}{}, 18 \frac{3_{8}^{\prime \prime}}{}$, $24^{\prime \prime}$ and $21 \frac{1^{\prime \prime}}{4}$. But the bladders did not always fall di-
directly down, but fometimes fluttered a little in the air, and waved to and fro as they were defcending. And by thefe motions the times of their falling were prolonged, and increafed by half a fecond fometimes, and fometimes by a whole fecond. The fecond and fourth bladder fell moft directly the firft time, and the firft and third the fecond time. The fifth bladder was wrinkled, and by its wrinkles was a little retarded. I found their diameters by their circumferences meafured with a very fine thread wound about them twice. In the following table I have compared the experiments with the theory; making the denfity of air to be to the denfity of rain-water as I to 860 , and computing the fpaces which by the theory the globes ought to defcribe in falling.

The weights of the bladders.	$\begin{gathered} \text { The diame- } \\ \text { ters. } \end{gathered}$	$\left\|\begin{array}{l} \text { The etimes of } \\ \text { falligg f fon } \\ \text { a height of } \\ 272 \text { foot. } \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { The Spaces which by } \\ & \text { the e hocoro ought to } \\ & \text { have beren deferibed } \\ & \text { in thofe times. } \end{aligned}\right.$	The diference besween the theory ana the experiments.
128 grains	5,28 incties	$19^{\prime \prime}$	271 foot $11{ }^{\text {inches }}$	- ofot I inct
156	5,19	17.	$272{ }^{27}{ }^{\frac{1}{2}}$	- 0^{\prime}
$137 \frac{1}{2}$	5,3	$18 \frac{1}{2}$	2727	+o 7
$97 \frac{1}{\text { ¢ }}$	5,26	22	2774	+ 54
99 ${ }^{\frac{7}{8}}$		218	282 -	+10

Our theory therefore exhibits rightly, within a very little, all the refiftance that globes moving either in air or in water meet with ; which appears to be proportional to the denfities of the fluids in globes of equal velocities and magnitudes.
In the fcholium fubjoined to the fixth fection, we fhewed by experiments of pendulums, that the refiftances of equal and equally fwift globes moving in air, water, and quickfilver, are as the denfities of the fluids. We here prove the fame more accurately by experiments of bodies falling in air and water. For pendulums at each ofcillation excite a motion in the fluid al-
ways contrary to the motion of the pendulum in its return; and the refiffance arifing from this motion, as aifo the refiftance of the thread by which the pendulum is fufpended, makes the whole refiftance of a pendulum greater than the refiftance deduced from the experiments of falling bodies. For by the experiments of pendulums defcribed in that fcholium, a globe of the fame denfity as water in defcribing the length of its femidiameter in air would lofe the $\frac{1}{334^{2}}$ part of its motion. But by the theory delivered in this feventh fection, and confirmed by experiments of falling bodies, the fame globe in defcribing the farme length would lofe only a part of its motion equal to $\frac{1}{4586}$. fuppofing the denfity of water to be to the denfity of air as 860 to I . Therefore the refiftances were found greater by the experiments of pendulums (for the reafons juft mentioned) than by the experiments of falling globes; and that in the ratio of about 4 to 3. But yet fince the refiftances of pendulums ofcillating in air; water, and quickfilver, are alike increafed by like caufes, the proportion of the refiftances in thefe mediums will be rightly enough exhibited by the experi-ments of pendulums, as well as by the experiments of falling bodies. And from all this it may be concluded; that the refiftances of bodies, moving in any fluids whatfoever, tho' of the moft extreme fluidity, are; cateris paribus, as the denfities of the fluids.

Thefe things being thus eftablifhed, we may now determine what part of its motion any globe projected in any fluid whatfoever would nearly lofe in a given time. Let D be the diameter of the globe, and V its velocity at the beginning of its motion, and T the time in which a globe with the velocity V can defcribe in vacuo a fpace that is to the fpace $\frac{8}{3} \mathrm{D}$ as the denfity of the globe to the denfity of the fluid; and the globe projected in that fluid will, in any other
time t, lofe the part $\frac{t \mathrm{~V}}{\mathrm{~T}-t}$, the part $\frac{\mathrm{TV}}{\mathrm{T}-t}$ remaining ; and will defrribe a fpace, which may be to that defcribed in the fame time in vacuo with the uniform velocity V , as the logarithm of the number $\frac{T+t}{T}$ multiplied by the number 2,302585093 is to the number $\frac{t}{\mathrm{~T}}$, by cor. 7 . prop. 35. In flow motions the reffiftance may be a little lefs, becaufe the figure of a globe is more adapted to motion than the figure of a cylinder defcribed with the fame diameter. In fwift motions the refiftance may be a little greater, becaufe the elafticity and compreffion of the fluid do not increafe in the duplicate ratio of the velocity. But thefe little niceties I take no notice of.

And tho' air, water, quick filver, and the like fluids, by the divifion of their parts in infinitum, fhould be fubtilized and become mediums infinitely fluid; neverthelefs, the refiftance they would make to projected globes would be the fame. For the refiftance confider'd in the preceding propofitions, arifes from the inativity of the matter ; and the inactivity of matter is effential to bodies, and always proportional to the quantity of matter. By the divifion of the parts of the fluid, the refiftance arifing from the tenacity and frittion of the parts may be indeed diminifhed; but the quantity of matter will not be at all diminithed by this divifion; and if the quantity of matter be the fame, its force of inativity will be the fame; and therefore the refiftance here fpoken of will be the fame, as being always proportional to that force. To diminifh this refiffance, the quantity of matter in the fpaces thro' which the bodies move muft be diminifhed. And therefore the celeftial fpaces, thro' which the globes of the Planets and Comers are perpetually paffing towards all parts, Vol. II.

162 Mathematical Principles Book II:
with the utmoft freedom, and without the leaft fenfible diminution of their motion, muft be utterly void of any corporeal fluid, excepting perhaps fome extremely rare vapours, and the rays of light.

Projectiles excite a motion in fluids as they pass thro them; and this motion arifes from the excefs of the preflure of the fluid at the fore - parts of the projectile above the preffure of the fame at the hinder parts; and cannot be lefs in mediums infinitely fluid, than it is in air, water, and quickfilver, in proportion to the denfity of matter in each. Now this excefs of preffure does, in proportion to its quantity, not only excite a motion in the fluid, but alfo adts upon the projectile fo as to retard its motion : and therefore the refiftance in every fluid is as the motion excited by the projectile in the fluid; and cannot be lefs in the moft fubtile x ther in proportion to the denfity of that x ther, than it is in air, water, and quickfilver, in proportion to the denfities of thofe fluids.

SEC-

SECTION VIII.

Of motion propagated thro fluids.

Proposition XLI. Theorem XXXII. A preffure is not propagated thro' a fluid in rectilinear directions, unlefs where the particles of the fuid lie in a right line. Pl. 8. Fig. r.

If the particles d, b, c, d, e, lie in a right line, the preffure may be indeed directly propagated from a to i; but then the particle e will urge the obliquely pofited particles f and g obliquely, and thofe particles f. and g will not fuftain this preffure, unlefs they be fupported by the particles' b and k lying beyond them; but the particles that fupport them, are alfo preffed by them; and thofe particles cannot fuftain that preffure, without being fupported by, and preffing upon, thofe particles that lie ftill farther; as l and m, and fo on in infinitum. Therefore the preffure, as foon as it is propagated to particles that lie out of right lines, begins to deflect towards one hand and t'other, and will be propagated obliquely in infinitum; and after it has begun to be propagated obliquely, if it reaches miore diftant particles lying out of the right line, it will deflect again on each hand; and this it will do as M 2 ofter
often as it lights on particles that do not lie exactly in a right line. O.E.D.

Cor. If any part of a preffure, propagated thro' a fluid from a given point, be intercepted by any obftacle; the remaining part, which is not intercepted, will deffect into the fpaces behind the obftacle. This may be demonftrated alfo after the following manner. Let a preflure be propagated from the point A (Pl. 8. Fig. 2.) towards any part, and, if it be poffible, in rectilinear directions; and the obftacle NBCK being perforated in $B C$, let all the preffure be intercepted but the coniform part $A P Q$ palfing thro' the circular hole $B C$. Let the cone $A P Q$ be divided into fruftums by the tranfverfe planes $d e, f g$, $h i$. Then while the cone $A B C$, propagating the preffure, urges the conic fruftum $\operatorname{deg} f$ beyond it on the fuperficies de, and this fruftum urges the next fruftum $f g i b$ on the fuperficies $f g$, and that fruftum urges a third fruftum, and fo in infinitum; it is manifeft (by the third law) that the firft fruftum defg is, by the reaction of the fecond fruftum $f g_{h}$, as much urged and preffed on the fuperficies $f g$, as it urges and preffes that fecond fruftum. Therefore the fruftum $\operatorname{deg} f$ is compreffed on both fides, that is, beween the cone $A d e$ and the fruftum fbig; and therefore (by cafe 6 . prop. 19.) cannot preferve its figure, unlefs it be compreffed with the fame force on all fides. Therefore with the fame force with which it is preffed on the fuperficies $d e, f g$, it will endeavour to break forth at the fides $d f$, eg; and there (being not in the leaft tenacious or hard, but perfectly fluid) it will run out, expanding itfelf, unlefs there be an ambient fluid oppoling that endeavour. Therefore, by the effort it makes to run out, it will prefs the ambient fluid, at its fides $d f$, $e g$, with the fame force that it does the fruftum $f g h i$; and therefore the preffure will be propagated as much from the fides $d f, \mathrm{eg}$ into the fpaces $N O, K L$ this way and that way, as it
is propagated from the fuperficies $f g$ towards $P Q$. O.E.D.

Proposition XLII. Theorem XXXIII.

All motion propagated tbro' a fluid, diverges from a rectilinear progrefs into the unmoved Spaces. PI. 8. Fig. 3.

Case i. Let a motion be propagated from the point A thro' the hole $B C$, and, if it be poffible, let it proceed in the conic fpace $B C Q P$ according to right lines diverging from the point A. And let us firft fuppofe this motion to be that of waves in the furface of flanding water; and let de, fg, hi, kl, \&kc. be the tops of the feveral waves, divided from each other by as many intermediate valleys or hollows. Then, becaufe the water in the ridges of the waves is higher than in the unmoved parts of the fluid $K L, N O$, it will run down from off the tops of thofe ridges $e, g, i, l, \& a$. $d, f, b, k, \& c$. this way and that way towards $K L$ and $N O$; and becaufe the water is more depreffed in the hollows of the waves than in the unmoved parts of the fluid $K L, N O$, it will run down into thofe hollows out of thofe unmoved parts. By the firft deflux the ridges of the waves will dilate themfelves this way and that way, and be propagated towards $K L$ and $N O$. And becaufe the motion of the waves from A towards $P Q$ is carried on by a continual deflux from the ridges of the waves into the hollows next to them ; and therefore cannot be fwifter than in proportion to the celerity of the defcent; and the defcent of the water on each fide towards $K L$ and $N O$ muft be performed with the fame velocity; it follows, that the dilatation of the waves on each fide towards $K L$ and $N O$ will be propagated with the fame velocity as the waves them-
felves

166

 Mathematical Principles Book IX. felves go forward with, directly from A to $P Q$. And therefore the whole fpace this way and that way towards $K L$ and $N O$ will be filled by the dilated waves $r f g r$, shis, tklt, vmnv, \&c. O.E.D. That there things are fo, any one may find by making the experiment in ftill water.Case 2. Let us fuppofe that de, $f g, b i, k l, m i n=$ reprefent pulfes fucceffively propagated from the point A thro' an elaftic medium. Conceive the pulfes to be propagated by fucceffive condenfations and rarefactions of the medium, fo that the denfeft part of every pulfe may occupy a fpherrical fuperficies defcribed about the centre A, and that equal intervals intervene between the fucceffive pulfes. Let the lines de, fg, $h i, k l, \& c$. reprefent the denfeft parts of the pulfes, propagated thro the hole $B C$; and becaufe the medium is denfer there, than in the fpaces on either fide towards $K L$ and NO, it will dilate itfelf as well towards thofe faces $K L, N O$ on each hand, as towards the rare intervals between the pulfes; and thence the medium becoming always more rare next the intervals, and more denfe next the pulfes, will partake of their motion. And becaufe the progreffive motion of the pulfes arifes from the perpetual relaxation of the denfer parts towards the antecedent rare intervals; and fince the pulfes will relax themfelves on each hand towards the quiefeent parts of the medium $K L, N O$, with very near the fame celerity ; therefore the pulfes will dilate themfelves on all fides into the unmoved parts $K L, N O$, with almoft the fame celerity with which they are propagated directly from the centre A; and therefore will fill up the whole fpace KLON. O.E.D. And we find the fame by experience alfo in founds, which are heard tho' a mountain interpofe; and if they come into a chamber thro' the window, dilate themfelves into all the parts of the room, and are heard in every corner ; and not as reflected from the oppofite walls, but directly
rectly propagated from the window, as far as our fenfe can judge.

Case 3. Let us fuppofe laftly, that a motion of any kind is propagated from A thro' the hole BC. Then fince the caufe of this propagation is, that the parts of the medium that are near the centre A difturb and agitate thofe which lie farther from it; and fince the parts which are urged are fluid, and therefore recede every way towards thofe fpaces where they are lefs preffed, they will by confequence recede towards all the parts of the quiefcent medium; as well to the parts on each hand, as $K L$ and $N O$, as to thofe right before as $P Q$: and by this means all the motion, as foon as it has paffed thro' the hole $B C$, will begin to dilate itfelf, and from thence, as from its principle and centre, will be propagated directly every way. O.E.D.

Proposition XLIII. Theorem XXXIV.

Every tremulous body in an elaffic medium propagates the motion of the pulfes on every fide right forward; but in a non-elaftic ma dium excites a circular motion.

CASE I. The parts of the tremulous body alternately going and returning, do in going urge and drive before them thofe parts of the medium that lie neareft, and by that impulfe comprefs and condenfe them ; and in returning fuffer thofe compreffed parts to recede again and expand themfelves. Therefore the parts of the medium that lie neareft to the tremulous body, move to and fro by turns, in like manner as the parts of the tremulous body itfelf do; and for the fame caufe that the parts of this body agitate thefe parts of the medium, thefe parts being agitated by like tremors, M 4
will
will in their turn agitate others next to themelves, and thefe others agitated in like manner, will agitate thofe that lie beyond them, and fo on in infinitum. And in the fame manner as the firft parts of the medium were condenfed in going, and relaxed in returning, fo will the other parts be condenfed every time they go, and expand themelves every time they return. And therefore they will not be all going and all returning at the fame inftant, (for in that cafe they would always preferve determined diftances from each other, and there could be no alternate condenfation and rarefaction;) but fince in the places where they are condenfed, they approach to, and in the places where they are rarefied, recede from, each other; therefore fome of them will be going while others are returning; and fo on in infinitum. The parts fo going, and in their going condenfed, are pulfes, by reafon of the progreffive motion with which they ftrike obftacles in their way; and therefore the fucceffive pulfes produced by a tremulous body, will be propagated in rectilinear directions; and that at nearly equal diftances from each other, becaufe of the equal intervals of time in which the body, by its feveral tremors, produces the feveral pulfes. And tho' the parts of the tremulous body go and return in fome certain and determinate direction, yet the pulfes propagated from thence thro' the medium, will dilate themfelves towards the fides, by the foregoing propofition; and will be propagated on all fides from that tremulous body, as from a common centre, in fuperficies nearly fphrrical and concentrical. An example of this we have in waves excited by fhaking a finger in water, which proceed not only. forwards and backwards agreeably to the motion of the finger, but fpread themelves in the manner of concentrical circles all round the finger, and are propagated on every fide. For the gravity of the water fupplies the place of elaftic force.

CASE 2. If the medium be not elaftic, then, becaufe its parts cannot be condenfed by the preffure arifing from the vibrating parts of the tremulous body, the motion will be propagated in an inflant towards the parts where the medium yields moft eafily, that is, to the parts which the tremulous body leaves for fome time vacuous behind it. The cale is the fame with that of a body projected in any medium whatever. A medium yielding to projectiles does not recede in infinitum, but with a circular motion comes round to the fpaces which the body leaves behind it. Therefore as often as a tremulous body tends to any part, the medium yielding to it comes round in a circle to the parts which the body leaves; and as often as the body returns to the firt place, the medium will be driven from the place it came round to, and return to its original place. And tho' the tremulous body be not firm and hard, but every way flexible; yet if it continue of a given magnitude, fince it cannot impel the medium by its tremors any where without yielding to it fomewhere elfe; the medium receding from the parts where it is preffed, will always come round in a circle to the parts that yield to it. Q.E.D.

Cor. 'Tis a miftake therefore to think, as fome have done, that the agitation of the parts of flame conduces to the propagation of a preffure in rectilinear directions thro' an ambient medium. A preffure of that kind mult be derived, not from the agitation only of -the parts of flame, but from the dilatation of the whole.

Proposition XLIV. Theorem XXXV.

 If water afcend and defcend alternately in the erected legs KL, M N of a canal or pipe; and a pendulum be confructed, whofe length between the point of fufpenfion and the centre of ofcillation is equal to balf the lengtb of the water in the canal: I fay, that the water will afcend and defcend in the fame times in which the pendulum of cillates. P1. 8. Fig. 4.I meafure the length of the water along the axes of the canal and its legs, and make it equal to the fum of thofe axes; and take no notice of the refiffance of the water, arifing from its attrition by the fides of the canal. Let therefore $A B, C D$ reprefent the mean height of the water in both legs; and when the water in the $\operatorname{leg} K L$ afcends to the height $E F$, the water will defcend in the leg $M N$ to the height $G H$. Let P be a pendulous body, $V P$ the thread, V the point of fufpenfion, $R P Q S$ the cycloid which the pendulum defribes, P its loweft point, $P Q$ an arc equal to the height $A E$. The force, with which the motion of the water is accelerated and retarded alternately, is the excefs of the weight of the water in one leg above the weight in the other; and therefore, when the water in the leg $K L$ afcends to $E E$, and in the other leg defcends to $G H$, that force is double the weight of the water $E A B F$, and therefore is to the weight of the whole water as $A E$ or $P Q$ to $V P$. or $P R$. The force alfo with which the body P is accelerated or retarded in any place as Q of a cycloid, is (by cor. prop. 5 I.) to its whole weight, as its diftance $P Q$ from the loweft place P to the length $P R$ of the cycloid. Therefore the motive forces of the water and pendulum, defcribing

Scat. VIII. of Natural Philofophy.
bing the equal faces $A E, P Q$ are as the weights to be moved; and therefore if the water and pendulum are quiefcent at firft, thofe forces will move them in equal times, and will caufe them to go and return together with a reciprocal motion. O.E.D.

Cor.i. Therefore the reciprocations of the water in afcending and defcending, are all performed in equal times, whether the motion be more or lefs intenfe or remifs.

Cor. 2. If the length of the whole water in the canal be of $6 \frac{1}{9}$ feet of French meafure, the water will defcend in one fecond of time, and will afcend in anpther fecond, and fo on by turns in infinitum ; for a pendulum of ${ }_{1}^{1} 1_{18}^{2}$ fuch feet in length will of cillate in one fe cond of time.

Cor. 3. But if the length of the water be increafed or diminifhed, the time of the reciprocation will be increafed or diminifhed in the fubduplicate ratio of the length.

Proposition XLV. Theorem XXXVI.

 The velocity of waves is in the fubduplicate ratio of the breadths.This follows from the conftruction of the following propofition.

Proposition XLVI. Problem X.

Ta find the velocity of waves.
' Let a pendulum be conftructed, whofe length beiween the point of fufpenfion and the centre of ofcillation is equal to the breadth of the waves; and in the time that the pendulum will perform one fingle ofcillations
lation, the waves will advance forward nearly a fpace equal to their breadth.

That which I call the breadth of the waves is the tranfverfe meafure lying between the deepeft part of the hollows, or the tops of the ridges. Let $A B C D E F$ (Pl.8. Fig. s.) reprefent the furface of ftagnant water afcending and defcending in fucceffive waves; and let $A, C, E, \& c$. be the tops of the waves; and let $B, D, F, \& c$. be the intermediate hollows. Becaufe the motion of the waves is carried on by the fucceffive afcent and defcent of the water, fo that the parts thereof, as $A, C, E, \& c$. which are higheft at one time, become loweft immediately after; and becaufe the motive force, by which the higheft parts defcend and the loweft afcend, is the weight of the elevated water, that alternate afcent and defcent will be analogous to the reciprocal motion of the water in the canal, and obferve the fame laws as to the times of its afcent and defcent; and therefore (by prop. 44.) if the diftances between the higheft places of the waves A, C, E, and the loweft B, D, F, be equal to twice the length of any pendulum, the higheft parts A, C, E, will become the loweft in the time of one ofcillation, and in the time of another ofcillation will afcend again. Therefore between the paffage of each wave, the time of two ofcillations will intervene; that is, the wave will defrribe its breadth in the time that pendulum will ofcillate twice; but a pendulum of four times that length, and which therefore is equal to the breadth of the waves, will jult of cillate once in that time. O.E.I.

Cor. i. Therefore waves, whofe breadth is equal to $3 \frac{1}{1,}$ French feet, will advance thro' a Space equal to their breadth in one fecond of time; and therefore in one minute will go over a face of $183 \frac{1}{3}$ feet; and in an hour a pace of 11000 feet, nearly.

Cor. 2: And the velocity of greater or lefs waves will be augmented or diminifhed in the fubduplicate ratio of their breadth.

Thefe

1
,

15alsedity Google

Thefe things are true upon the fuppofition, tbat the parts of water afcend or defcend in a right line; but in truth, that afcent and defcent is rather performed in a circle; and therefore I propofe the time defined by this propofition as only near the truth.

Proposition XLVII.Theorem XXXVII.

 If pulfes are propagated thro' a fuid, the feveral particles of the fluid, going and returning with the fhorteft reciprocal motion, are always accelerated or retarded according to the law of the of cillating pendulum. Pl. 9 . Fig. I.Let $A B, B C, C D$, \&c. reprefent equal diftances of fucceffive pulfes; $A B C$ the line of direction of the motion of the fucceffive pulfes, propagated from A to $B ; E, F, G$ three phyfical points of the quiefcent medium fituate in the right line $A C$ at equal diftances from each other ; $E e, F f, G g$ equal fpaces of extreme fhortnefs, thro' which thofe points go and return with a reciprocal motion in each vibration ; $\varepsilon, \phi, \gamma$ any intermediate places of the fame points; and $E F, F G$ phyfical lineolx, or linear parts of the medium lying between thofe points, and fucceffively transfer'd into the places $\varepsilon \varphi, \varphi \gamma$, and $e f, f g$. Let there be drawn the right line $P S$ equal to the right line Ee. Bifect the fame in O, and from the centre O, with the interval $O P$, defrribe the circle $S I P i$. Let the whole time of one vibration, with its proportional parts, be expounded by the whole circumference of this circle and its parts; in fuch fort, that when any time $P \mathrm{H}$ or PHSb is compleated, if there be let fall to $P S$ the perpendicular $H L$ or $h l$, and there be taken E_{ε} equal to $P L$ or $P l$, the phyfical point E may be found in ε.

1う4 Matheriatical Principles Book II.
A point as E moving according to this law with a reciprocal motion, in its going from E thro' ε to c, and recturning again thro' ε to E, will perform its feveral vibrations with the fame degrees of acceleration and retardation with thofe of an ofcillating pendulum. We are now to prove, that the feveral phyfical points of the medium will be agitated with fuch a kind of motion. Let us fuppofe then, that a medium hath fuch a motion excited in it from any caufe whatfoever, and confider what will follow from thence.

In the circumference $P H S b$ let there be taken the equal arcs $H I, I K$, or $b i$, $i k$, having the fame ratio to the whole circumference as the equal right lines $E F$, $\boldsymbol{F G}$ have to $B C$ the whole interval of the pulfes. Let fall the perpendiculars $I M, K N$ or $i m, k n$; then becaufe the points E, F, G are fucceffively agitated with like motions, and perform their entire vibrations compofed of their going and return, while the pulfe is rransferr'd from B to C; if $P H$ or $P H S b$ be the time elapled fince the beginning of the motion of the point E, then will $P I$ or $P H S i$ be the time elapfed fince the beginning of the motion of the point F, and $P K$ or $P H S k$ the time elapfed fince the beginning of the motion of the point G; and therefore $E_{\varepsilon}, F \varphi, G \boldsymbol{\gamma}$ will be refpectively equal to $P L, P M, P N$, while the points are going, and to $P l, P m, P_{n}$, when the points are returning. Therefore $\varepsilon \gamma$ or $E G-\mid-G \gamma-$ E_{ε} will, when the points are going, be equal to $E G$ $-L N$, and in their return equal to $E G+l n$. But $\varepsilon \gamma$ is the breadth or expanfion of the part $E G$ of the modium in the place $\varepsilon \gamma$; and therefore the expanfion of that part in its going, is to its mean expanfion as $E G-L N$ to $E G$; and in its return as $E G-1 n$ or $E G-L N$ to $E G$. Therefore fince $L N$ is to $K \boldsymbol{H}$ as $I M$ to the radius $O P$, and $K H$ to $E G$ as the circumference $P H S h P$ to $B C$; that is, if we put V for the radius of a circle whofe circumference is equal to
$B C$ the interval of the pulfes, as $O P$ to V ; and, ex equo, $L N$ to $E G$ as $I M$ to V ; the expanfion of the part $E G$ or of the phyfical point F in the place $: \gamma$ to the mean expanfion of the fame part in its firft place $E G$, will be as $V-I M$ to V in going, and as V --im to V in its return. Hence the elaltic force of the point F in the place $\varepsilon \gamma$ to its mean elaftic force in the place $E G$, is as $\frac{1}{V-I M}$ to $\frac{1}{\mathrm{~V}}$ in its going, and as $\frac{\mathrm{I}}{\mathrm{V}-1-i m}$ to $\frac{\mathrm{I}}{\mathrm{V}}$ in its return. And by the fame reafoning the elaftic forces of the phyfical points E and G in going, are as $\frac{\mathrm{I}}{\mathrm{V}-H L}$ and $\frac{\mathrm{I}}{\mathrm{V}-K N}$ to $\frac{\mathrm{I}}{\mathrm{V}}$; and the difference of the forces to the mean elaftic force of the medium, as $H L-K N$
V $\mathrm{V}-\mathrm{V} \times H L-\mathrm{V} \times K N-H L \times K N$ to $\frac{\mathrm{I}}{\mathrm{V}}$; that is, as $\frac{H L-K N}{\mathrm{~V} \overline{\mathrm{~V}}}$ to $\frac{\mathrm{I}}{\mathrm{V}}$, or as $H L-$ $K N$ to V ; if we fuppofe (by reafon of the very fhort extent of the vibrations) $H L$ and $K N$ to be indefinitely lefs than the quantity V. Therefore fince the quantity V is given, the difference of the forces is as $H L-K N$; that is, (becaufe $H L-K N$ is proportional to $H K$, and $O M$ to $O I$ or $O P$; and becaufe $H K$ and $O P$ are given) as $O M$; that is, if $F f$ be bifected in Ω, as $\Omega \varphi$. And for the fame reafon the difference of the elaftic forces of the phyfical points \& and γ in the return of the phyfical lineola $\varepsilon \gamma$, is as $\Omega \varphi$. But that difference (that is, the excefs of the elaftic force of the point ε above the elaftic force of the point γ) is the very force by which the intervening phyfical lineola $\varepsilon \gamma$ of the medium is accelerated in going, and retarded in returning; and therefore the accelerative force of the phyfical lineola $: \gamma$ is
as its diftance from Ω the middle place of the vibration. Therefore (by prop. 38. book 1.) the time is rightly expounded by the arc $P I$; and the linear part of the medium $\varepsilon \gamma$ is moved according to the law abovementioned, that is, according to the law of a pendulum ofcillating; and the cafe is the fame of all the linear parts of which the whole medium is compounded. Q.E.D.

Cor. Hence it appears that the number of the pulfes propagated is the fame with the number of the vibrations of the tremulous body, and is not multiplied in their progrefs. For the phyfical lineola $\varepsilon \gamma$ as foon as it returns to its firft place is at reft; neither will it move again, unlefs it receives a new motion, either from the impulfe of the tremulous body, or of the pulfes propagated from that body. As foon therefore as the pulfes ceafe to be propagated from the tremulous body, it will return to a flate of reft; and move no more.

Proposition XLVIII. Theorem XXXVIII.

 The velocities of pulfes propagated in an elaftic fluid, are in a ratio compounded of the fubduplicate ratio of the elaftic force directly, and the fubduplicate ratio of the denfity inverfely; fuppofing the elaftic force of the fluid to be proportional to its condenfation.Case i. If the mediums be homogeneous, and the diftances of the pulfes in thofe mediums be equal amonglt themfelves, but the motion in one medium is more intenfe than in the other : the contractions and dilatations of the correfpondent parts will be as thofe motions. Not that this proportion is perfectly accurate. However, if the contrations and dilatations are not exceedingly intenfe, the error will not be fenfible; and there-
therefore this proportion may be confider'd as phyfically exact. Now the motive elaftic forces are as the contractions and dilatations; and the velocities generated in the fame time in equal parts are as the forces. Therefore equal and correfponding parts of correfponding pulfes will go and return together, thro' fpaces proportional to their contractions and dilatations, with velocities that are as thofe fpaces: and therefore the pulfes, which in the time of one going and returning advance forwards a fpace equal to thcir breadth, and are always fucceeding into the places of the pulfes that immediately go before them, will, by reafort of the equality of the diftances, go forward in both mediums with equal velocity.

Case 2. If the diftances of the 'pulfes or their lengths are greater in one medium thian in another; let us fuppofe that the correfpondent parts defribe fpaces; in going and returning, each time proportional to the breadths of the pulfes: then will their contractions and dilatations be equal. And therefore if the mediums are homogeneous, the motive elaftic forces, which agitate them with a reciprocal motion; will be equal alfo. Now the matter to be moved by thefe forces is as the breadth of the pulfes; and the face thro' which they move every time they go and return, is in the fame ratio. And moreover, the time of one going and returning, is in a ratio compounded of the fubduplicate ratio of the matter, and the fubduplicate ratio of the fpace; and therefore is as the fpace. But the pulfes advance a fpace equal to their breadths in the times of going once and returning once, that is, they go over faces proportional to the times; and therefore are equally. fwift.
Case 3. And therefore in mediums of equal denfity and elaftic force, all the pulfes areequally fwift. Now if the denfity or the elaftic force of the medium were augmented, then becaufe the motive force is increafed
Vol. II.
N
if
in the ratio of the elaftic force, and the matter to be moved is increafed in the ratio of the denfity; the time which is neceffary for producing the fame motion as before, will be increafed in the fubduplicate ratio of the denfity, and will be diminifhed in the fubduplicare ratio of the elaftic force. And therefore the velocity of the pulfes will be in a ratio compounded of the fubduplicate ratio of the denfity of the medium inverfely, and the fubduplicate ratio of the elaftic force directly. Q.E.D.

This propofition will be made more clear from the confruction of the following problem.

Proposition XLIX. Problem XI.

The denfity and elaftic force of a medium being: given, to find the velocity of the pulfes.

Suppofe the medium to be prefs'd by an incumbent weight after the manner of our air; and let A be the height of a homogeneous medium, whofe weight is equal to the incumbent weight and whofe denfity is the fame with the denfity of the comprefled medium in which the pulfes are propagated. Suppofe a pendulum to be conftructed, whole length between the point of furpenfion and the centre of ofcillation is A: and in the time in which that pendulum will perform one entire ofcillation compofed of its going and returning, the pulfe will be propagated right onwards, thro' a f pace equal to the circumference of a circle defrcibed with the radius A.

For letting thofe things ftand which were conftructed in Prop. 47. if any phyfical line as $E F$ (Pl.9. Fig. 1.) defrribing the fpace $P S$ in each vibration, be acted on in the extremities P and S of every going and return that it makes by an elaftic force that is equal to its weight ; it will perform its feveral vibrations in
the time in which the fame might ofcillate in a cycloid, whofe whole perimeter is equal to the length $P S$: and that becaufe equal forces will impel equal corpufcles thro' equal fpaces in the fame or equal times. Therefore fince the times of the ofcillations are in the fubduplicate rario of the lengths of the pendulums, and the length of the pendulum is equal to half the arc of the whole cycloid; the time of one vibration would be to the time of the ofcillation of a pendulum, whofe length is A, in the fubduplicate ratio of the length $\frac{1}{2} P S$ or $P O$ to the length A. But the elaftic force, with which the phyfical lineola $E G$ is urged, when it is found in its extreme places P, S, was (in the demonftration of prop. 47.) to its whole elaftic force as $H L-K N$ to V, that is, (fince the point K now falls upon P) as $H K$ to V: and all that force, or; which is the fame thing, the incumbent weight by which the lineola $E G$ is comprefs'd, is to the weight of the lineola as the altitude \mathbf{A} of the incumbent weight to $E G$ the length of the lineola; and therefore, ex aquo, the force with which the lineola $E G$ is urged in the places P and S, is to the weight of that lineola as $H K \times \mathrm{A}$ to $\mathrm{V} \times E G$; or as $P O \times \mathrm{A}$ to V V ; becaufe $H K$ was to $E G$ as $P O$ to V. Therefore fince the times, in which equal bodies are impelled thro' equal fpaces, are reciprocally in the fubduplicate ratio of the forces, the time of one vibration, produced by the attion of that elaftic force, will be to the time of a vibration, produced by the impulfe of the weight, in a fubduplicare ratio of VV to $P O \times \mathrm{A}$, and therefore to the time of the ofcillation of a pendulum whofe length is A , in the fubduplicate ratio of VV to $P O \times A$, and the fubduplicate ratio of $P O$ to A conjunctly ; that is, in the entire ratio of V to A . But in the time of one vibration compofed of the going and returning of the pendulum, the pulfe will be propagated right onwards thro' a fpace equal to its breadth $B C$. Therefore the time in which a pulfe runs over the fpace
$B C$, is to the time of one ofcillation compofed of the going and returning of the pendulum, as V to A , that is, as $B C$ to the circumference of a circle whofe radius is A. But the time in which the pulfe will run over the fpace $B C$, is to the time in which it will run over a length equal to that circumference, in the fame ratio; and therefore in the time of fuch an ofcillation, the pulfe will run over a length equal to that circumference. O.E.D.

Cor. i. The velocity of the pulfes is equal to that which heavy bodies acquire by falling with an equally accelerated motion, and in their fall defcribing half the altitude A. For the pulfe will, in the time of this fall, fuppofing it to move with the velocity acquired by that fall, run over a fpace that will be equal to the whole altitude A; and therefore in the time of one ofcillation compofed of one going and return, will go over a fpace equal to the circumference of a circle defrribed with the radius A : for the time of the fall is to the time of ofcillation, as the radius of a circle to its circumference.

Cor. 2. Therefore fince that altitude A is as the elaftic force of the fluid directly, and the denfity of the fame inverfely; the velocity of the pulfes will be in a ratio compounded of the fubduplicate ratio of the denfity inverfely, and the fubduplicate ratio of the elaftic force directly.

Proposition L. Problem XII. To find the diftances of the pulfes.

Let the number of the vibrations of the body, by whofe tremor the pulfes are produced, be found to any given time. By that number divide the face which a pulfe can go over in the fame time, and the part found will be the breadth of one pulfe. Q.E.I.

Sс̈ној

SCHOLIUM.

The laft propofitions refpect the motions of lighe and founds. For fince light is propagated in right lines, it is certain that it cannot confift in action alone, (by Prop. 41 and 42 .) As to founds, fince they arife from tremulous bodies, they can be nothing elfe but pulfes of the air propagated thro' it, (by Prop. 43) And this is confirmed by the tremors, which founds, if they be loud and deep, excite in the bodies near them, as we experience in the found of drums. For quick and fhort tremors are lefs eafily excited. But it is well known, that any founds, falling upon ftrings in unifon with the fonorous bodies, excite tremors in thofe ftrings. This is alfo confirmed from the velocity of founds. For fince the fecific gravities of rain-water and quick-filver are to one another as about 1 to $13 \frac{2}{3}$, and when the mercury in the barometer is at the height of 30 inches of our meafure, the fpecific gravities of the air and of rain-water are to one another as about I to 870: therefore the fpecific gravity of air and quickfilver are to each other as it to 11890 . Therefore when the height of the quick-filver is at 30 inches, a height of uniform air, whofe weight would be fufficient to comprefs our air to the denfity we find it to be of, muft be equal to 3.56700 inches or 29725 feet of our meafure. And this is that very height of the medium, which I have called A in the conftruction of the foregoing propofition. A circle whofe radius is 29725 feet is 186768 feet in circumference. And fince a pendulum $39 \frac{1}{5}$ inches in length compleats one ofcillation, compofed of its going and return, in two feconds of time, as is commonly known; it follows that a pendulum 29725 feet or 356700 inches in length will perform a like ofcillation in $190 \frac{3}{4}$ feconds. Therefore
in that time a found will go right onwards 186768 feet, and therefore in one fecond 979 feet.

But in this computation we have made no allowance for the craffitude of the folid particles of the air, by which the found is propagated inftantaneoufly. Becaufe the weight of air is to the weight of water as i to 870 , and becaufe falts are almoft twice as denfe as water; if the particles of air are fuppofed to be of near the fame denfity as thofe of water or falt, and the rarity of the air arifes from the intervals of the particles; the diameter of one particle of air will be to the interval between the centres of the particles, as i to about 9 or io, and to the interval between the particles themfelves as it to 8 or 9 . Therefore to 979 feer, which, according to the above calculation, a found will advance forward in one fecond of time, we may add $2 \frac{25}{9}$, or about 109 feet, to compenfate for the craffitude of the particles of the air: and then a found will go forward about 1088 feet in one fecond of time.

Moreover, the vapors floating in the air, being of another fpring, and a different tone, will hardly, if at all, partake of the motion of the true air in which the founds are propagated. Now if thefe vapors remain unmoved, that motion will be propagated the fwifter thro' the true air alone, and that in the fubduplicate ratio of the defect of the matter. So if the atmofphere conlift of ten parts of true air and one part of vapors, the motion of founds will be fwifter in the fubduplicate ratio of II to 10 , or very nearly in the entire ratio of 21 to 20 , than if it were propagated thro' eleven parts of true air : and therefore the motion of founds above difcovered muft be encreafed in that ratio. By this means the found will pafs thro' 114_{2} feet in one fecond of time.

Thefe things will be found true in fpring and autumn, when the air is rarefied by the gentle warmth of thofe feafons, and by that means its elaftic force be-
comes fomewhat more intenfe. Bat in winter, when the air is condenfed by the cold, and its elaftic force is fomewhat remitted, the motion of founds will be flower in a fubduplicate ratio of the denfity; and on the other hand, fwifter in the fummer.

Now by experiments it actually appears that founds do really advance in one fecond of time about 1142 feet of Englifh meafure, or 1070 feet of Frencls meafure.

The velocity of founds being known, the intervals of the pulles are known alfo. For M. Sanverr, by fome experiments that he made, found that an open pipe about five Paris feet in length, gives a found of the fame tone with a viol-ftring that vibrates a hundred times in one fecond. Therefore there are near 100 pulfes in a fpace of 1070 Paris feet, which a found runs over in a fecond of time; and therefore one pulfe fills up a fpace of about $10{ }_{10}^{1}$ P Paris feet, that is, about twice the length of the pipe. From whence it is probable, that the breadths of the pulfes, in all founds made in open pipes, are equal to twice the length of the pipes.

Moreover, from the corollary of prop. 47. appears the reafon, why the founds immediately ceale with the motion of the fonorous body, and why they are heard no longer when we are at a great diftance from the fonorous bodies, than when we are very near them. And befides, from the foregoing principles it plainly appears how it comes to pafs that founds are fo mightily encreafed in fpeaking-trumpets. For all reciprocal motion ufes to be encreafed by the generating caufe at each return. And in tubes hindering the dilatation of the founds, the motion decays more flowly, and recurs more forcibly; and therefore is the more encreafed by the new motion impreffed at each return, And thefe are the principal phænomena of founds.

SECTION IX.

 Of the circular motion of fluids.HYPOTHESIS.

The refiftance, arifing from the want of lubricity in the parts of a fluid, is, cateris paribus, proportional to the velocity with which. the parts of the fluid are Jeparated from each other.

Proposition LI. Theorem XXXVIII.

 If a Solid cylinder infinitely long, in an uniform and infinite fluid, revolve with an uniform motion about an axis given in pofition, and the fluid be forced round by only this impulfe of the cylinder, and every part of the fluid perfevere uniformly in its motion; I fay, that the periodic times of the parts of the fluid are as their diftances from the axis of the cylinder.Let $A F L$ (Pl.9. Fig. 2.) be a cylinder turning uniformly about the axis S, and let the concentric circles $B G M, C H N, D I O, E K P$, \&c. divide the fluid into innumerable concentric cylindric folid orbs of the fame
fame thicknefs. Then, becaufe the fluid is homogeneous, the impreffions which the contiguous orbs make upon each other mutually, will be (by the hypothefis) as their tranflations from each other, and as the contiguous fuperficies upon which the impreffions are made. If the impreffion made upon any orb be greater or lefs on its concave, than on its convex fide, the ftronger impreffion will prevail, and will either accelerate or retard the motion of the orb, according as it agrees with, or is contrary to the motion of the fame. Therefore, that every orb may perfevere uniformly in its motion, the impreffions made on both fides mult be equal, and their directions contrary. Therefore fince the impreffions are as the contiguous fuperficies, and as their tranflations from one another ; the tranflations will be inverfely as the fuperficies, that is, inverfely as the diftances of the fuperficies from the axis. But the differences of the angular motions about the axis, are as thofe tranflations applied to the diftances, or as the tranflations directly and the diftances inverfely ; that is, joining thefe ratio's together, as the fquares of the diftances inverfely. Therefore if there be erected the lines Aa, $B b, C c, D d, E e, \& c$. perpendicular to the feveral parts o\& the infinite right line $S A B C D E Q$ and reciprocally proportional to the fquares of $S A, S B, S C, S D, S E, \& c$. and thro' the extremities of thofe perpendiculars there be fuppofed to pafs an hyperbolic curve; the fums of the differences, that is, the whole angular motions, will be as the correfpondent fums of the lines $A a, B b, C c$, $D d, E_{e}$, that is, (if to conftitute a medium uniformly fluid, the number of the orbs be encreafed and their breadth diminifhed in infinitum) as the hyperbolic area's $A a \underline{Q}, B b \underline{Q}, C c \underline{Q}, D d O, E e Q, \& c$. analogous to the fums. And the times, reciprocally proportional to the angular motions, will be alfo reciprocally proportional to thofe areas. Therefore the periodic time of any parricle as D, is reciprocally as the area $D d Q$, that is, (as
appears from the known methods of quadratures of curves) directly as the diftance $-S$. Q.E. D.

Cor. 1. Hence the angular motions of the particles of the fluid are reciprocally as their diftances from the axis of the cylinder, and the abfolute velocities are equal.

Cor.2. If a fluid be contained in a cylindric veffel of an infinite length, and contain another cylinder within, and both the cylinders revolve about one common axis, and the times of their revolutions be as their remidiameters, and every part of the fluid perfeveres in its motion: the periodic times of the feyeral parts will be as the diftances from the axis of the cylinders.

Cor. 3. If there be added or taken away any common quantity of angular motion from the cylinder and fluid moving in this manner ; yet becaufe this new motion will not alter the mutual attrition of the parts of the fluid, the motion of the parts among themfelves will not be changed. For the tranflations of the parts from one another depend upon the attrition. Any part will perfevere in that motion, which, by the attrition made on both fides with contrary directions, is no more accelerated than it is retarded.

COr.4. Therefore if there be taken away from this whole fyltem of the cylinders and the fluid, all the angular motion of the outward cylinder, we fhall have the motion of the fluid in a quiefcent cylinder.

Cor. 5. Therefore if the fluid and outward cylinder are at reft, and the inward cylinder revolve uniformly; there will be communicated a circular motion to the fluid, which will be propagated by degrees thro ${ }^{\circ}$ the whole fluid; and will go on continually encreafing, till fuch time as the feveral parts of the fluid acquire the motion determined in cor. 4 .

Cor. σ. And becaufe the fluid endeavours to propagate its motion ftill farther, its impulfe will carry the putmoft cylinder alfo about with it, unlefs the cylinder

Sect. IX. of Natural Pbilofophy. 189
be violently detained; and accelerate its motion till the periodic times of both cylinders become equal among themfelves. But if the outward cylinder be violently detained, it will make an effort to retard the motion of the fluid ; and unlefs the inward cylinder preferve that motion by means of fome external force impreffed thereon, it will make it ceafe by degrees.

All thefe things will be found true, by making the experiment in deep ftanding water,

Proposition LII. Theorem XL.

 If a Solid Sphere, in an uniform and infinite fuid, revolves about an axis given in pofition with an uniform motion, and the fluid be forced round by only this impulle of the fphere; and every part of the fuid perseverps uniformly in its motion: I fay, that the periodic times of the parts of the fluid are as the fquares of their diftances from the centre of the pphere:Case i, Let $A F L$ be a forere turning uniformly about the axis S, and let the concentric circles $B G M$, CHN, DIO, EKP, \&c. divide the fluid into innumerable concentric orbs of the fame thicknefs. Suppofe thofe orbs to be folid; and becaufe the fluid is homogeneous, the impreffions which the contiguous orbs make one upon another, will be (by the fuppofition) as their tranflations from one another, and the contiguous fuperficies upon which the impreffions are made. If the impreffion upon any orb be greater or lefs upon its concave than upon its convex fide; the more forcible impreffion will prevail, and will either accelerate or retard the velocity of the orb, according as it is direaed
rected with a confpiring or contrary motion to that of the orb. Therefore that every orb may perfevere uniformly in its motion, it is neceffary that the impreffions made upon both fides of the orb fhould be equal, and have contrary directions. Therefore fince the impreffions are as the contiguous fuperficies, and as their tranflations from one another; the tranflations will be inverfly as the fuperficies, that is, inverfly as the fquares of the diftances of the fuperficies from the centre. But the differences of the angular motions about the axis are as thole tranllations applied to the diftances, or as the tranflations directly and the diffances inverfly; that is, by compounding thofe ratio's, as the cubes of the diftances inverfly. Therefore, if upon the feveral parts of the infinite right line $S A B C D E O$ there be erected the perpendiculars $A a, B b, C c, D d, E e$, \&c. reciprocally proportional to the cubes of $S A, S B, S C$, $S D, S E, \& C$. the fums of the differences, that is, the whole angular motions, will be as the correfponding fums of the lines $A a, B b, C c, D d, E e_{0} \& c$. that is, (if to conftitute an uniformly fluid medium the number of the orbs be encreafed and their thicknefs diminifhed in infinitum) as the hyperbolic areas $A a Q$, $B b O, C c Q, D d Q, E c O, \& c$. analogous to the fums; and the periodic times being reciprocally proportional to the angular motions, will be alfo reciprocally proportional to thofe areas. Therefore the periodic time of any orb $D I O$ is reciprocally as the area $D d Q$, that is, (by the known methods of quadratures) directly as the fquare of the diftance $S D$. Which was firf to be demonftrated.

Case 2. From the centre of the fphere let there be drawn a great number of indefinite right lines, making given angles with the axis, exceeding one another by equal differences; and, by thefe lines revolving about the axis, conceive the orbs to be cut into innumerable annuli : then will every annulus have four an-
nuli contiguous to it, that is, one on its infide, one on its outfide, and two on each hand. Now each of thefe annuli cannot be impelled equally and with contrary directions by the attrition of the interior and exterior annuli unlefs the motion be communicated according to the law which we demonftrated in cafe r . This appears from that demonftration. And therefore any feries of annuli, taken in any right line extending itfelf in infinitum from the globe, will move according to the law of cafe 1. except we fhould imagine it hindered by the attrition of the annuli on each fide of it. But now in a motion, according to this law, no fuch attrition is, and therefore cannot be any obftacle to the motion's perfevering according to that law. If annuli at equal diftances from the centre revolve either more fwiftly or more flowly near the poles than near the ecliptic; they will be accelerated if flow, and retarded if f wift, by their mutual attrition; and fo the periodic times will continually approach to equality, according to the law of cafe 1 . Therefore this attrition will not at all hinder the motion from going on according to the law of cafe 1 . and therefore that law will take place $;$ that is, the periodic times of the feveral annuli will be as the fquares of their diftances from the centre of the globe. Which was to be demonftrated in the fecond place.

Case 3. Let now every annulus be divided by tranfverfe fections into innumerable particles conftituting a fubftance abfolutely and uniformly fluid; and becaufe thefe fections do not at all refpect the law of circular motion, but only ferve to produce a fluid fubftance, the law of circular motion will continue the fame as beforeAll the very fmall annuli will either not at all change their afperity and force of mutual attrition upon account of thefe fections, or elfe they will change the fame equally. Therefore the proportion of the caufes temaining the fame, the proportion of the effects will
remain motions and the periodic times. Q.E.D. But now as the circular motion, and the centrifugal force thence arifing, is greater at the ecliptic than at the poles, there muft be fome caufe operating to retain the feveral particles in their circles; otherwife the matter that is at the ecliptic will always recede from the centre, and come round about to the poles by the out/ide of the vortex, and from thence return by the axis to the ecliptic with a perpetual circulation.

Cor. I. Hence the angular motions of the parts of the fluid about the axis of the globe, are reciprocally as the fquares of the diftances from the centre of the globe, and the abfolute velocities are reciprocally as the tame fquares applied to the diftances from the axis.

Cor. 2. If a globe revolve with a uniform motion about an axis of a given pofition in a fimilar and infinite quiefcent fluid with an uniform motion, it will communicate a whirling motion to the fluid like that of a vortex, and that motion will by degrees be propagated onwards in infinitum ; and this motion will be encreafed continually in every part of the fluid; till the periodical times of the feveral parts become as the fquares of the diftances from the centre of the globe.

Cor. 3. Becaufe the inward parts of the vortex are by reafon of their greater velocity continually preffing upon and driving forwards the external parts, and by that action are perpetually communicating motion to them, and at the lame time thofe exterior parts communicate the fame quantity of motion to thofe that lie ftill beyond them, and by this action preferve the quantity of their motion continually unchanged; it is plain that the motion is perpetually transferred from the centre to the circumference of the vortex, till it is quite fwallowed up and loft in the boundlefs extent of that circumference. The matter between any two fphxrical fuperficies concentrical to the vortex will never be accelerated,

Sect. 1x. of Natural Pbilofopby:
celerated ; becaufe that matter will be always transferring the motion it receives from the matter nearer the centre to that matter which lies nearer the circumference.

Cor.4. Therefore in order to continue a vortex in the fame flate of motion, fome active principle is requil red, from which the globe may receive continually the fame quantity of motion which it is always communicating to the matter of the vortex. Without fuch a principle it will undoubtedly come to pals that the globe and the inward parts of the vortex, being always propagating their motion to the outward parts, and not receiving any new motion, will gradually move flower and flower, and at laft be carried round no longer.

Cor.5. If another globe fhould be fwimming in the fame vortex at a certain diffance from its centre, and in the mean time by fome force revolve conftantly about an axis of a given inclination; the motion of this globe will drive the fluid round after the manner of a vortex ; and at firf this new and fmall vortex will revolve with its globe about the centre of the other ; and in the mean time its motion will creep on, farther and farther, and by degrees be propagated in infinitum, after the manner of the firt vortex. And for the fame reafon that the globe of the new vortex was carried about before by the motion of the other vortex, the globe of this other will be carried about by the motion of this new vortex, fo that the two globes will revolve about fome intermediate point, and by reafon of that circular motion mutually fly from each other, unlefs fome force reftrains them. Afterwards, if the conftantly impreffed forces, by which the globes perfevere in their motions, hould ceafe, and every thing be left to act according to the laws of mechanics, the motion of the globes will languifh by degrees, (for the reafon affigned in cor. 3 and 4.) and the vortices at laft will quite ftand fill.

Cor. σ. If feveral globes in given places fhould conftantly revolve with determined velocities about axes given in pofition, there would arife from them as many vortices going on in infinitum. For upon the fame account that any one globe propagates its motion in infinitum, each globe apart will propagate its own motion in infinitum alfo; fo that every part of the infinite fluid will be agitated with a motion refulting from the actions of all the globes. Therefore the vortices will not be confined by any certain limits, but by degrees run mutually into each other; and by the mutual actions of the vortices on each other, the globes will be perpetually moved from their places, as was fhewn in the laft corollary; neither can they poffibly keep any certain pofition among themfelves, unlefs fome force reftrains them. But if thofe forces, which are conftantly impreffed upon the globes to continue thefe motions, fhould ceafe; the matter (for the reafon affigned in cor. 3 and 4.) will gradually Itop, and ceafe to move in vortices.

Cor. 7. If a fimilar fluid be inclofed in a fphxrical veffel, and by the uniform rotation of a globe in its centre, is driven round in a vortex; and the globe and veffel revolve the fame way abour the fame axis, and their periodical times be as the fquares of the femidiameters; the parts of the fluid will not go on in their motions without acceleration or retardation, till their periodical times are as the fquares of their diftances from the centre of the vortex. No conftitution of a vortex can be permanent but this.

Cor.8. If the veffel, the inclofed fluid, and the globe, retain this motion, and revolve befides with a common angular motion about any given axis; becaufe the mutual attrition of the parts of the fluid is not changed by this motion, the motions of the parts among each other will not be changed. For the tranflations of the parts among themfelves depend upon this attrition:

Any part will perfevere in that motion, in which its attrition on one fide retards it juft as much as its attrition on the other fide accelerates it.

Cor.9. Therefore if the veffel be quiefcent, and the motion of the globe be given, the motion of the fluid will be given. For conceive a plane to pafs thro' the axis of the globe, and to revolve with a contrary motion; and fuppofe the fum of the time of this revolution and of the revolution of the globe to be to the time of the revolution of the globe, as the fquare of the femidiameter of the veffel to the fquare of the femidiameter of the globe; and the periodic times of the parts of the fluid in refpect of this plane will be as the iquares of their diftances from the centre of the globe,

Cor. io. Therefore if the veffel move about the fame axis with the globe, or with a given velocity about a different one, the motion of the fluid will be given. For if from the whole fyftem we take away the angular motion of the veffel, all the motions will remain the fame among themfelves as before, by cor. 8. and thofe motions will be given by cor. 9 .

Cor. il. If the veffel and the fluid are quiefcent; and the globe revolves with an uniform motion, that motion will be propagated by degrees through the whole fluid to the veffel, and the veffel will be carried round by it, unlefs violently detained; and the fluid and the veffel will be continually accelerated till their periodic times become equal to the periodic times of the globe. If the veffel be either withheld by fome force, or revolve with any conftant and uniform motion, the medium will come by little and little to the ftate of motion defined in cor. 8.9. 1o. nor will it ever perfevere in any other ftate. But if then the forces, by which the globe and veffel revolve with certain motions, fhould ceafe, and the whole fyftem be left to act according to the mechanical laws, the veffel and globe, by means of the intervening fluid, will act upon Vol. II.

O each ons through the fluid to each other, till their periodic times become equal among themfelves, and the whole fyftem revolves together like one folid body.

Scholium.

In all thefe reafonings, I fuppofe the fluid to confift of matter of uniform denfity and fluidity. I mean that the fluid is fuch, that a globe placed any where therein may propagate with the fame motion of its own, at diftances from it felf continually equal, fimilar and equal motions in the fluid, in the fame interval of time. The matter by its circular motion endeavours to recede from the axis of the vortex; and therefore preffes all the matter that lies beyond. This preffure makes the attrition greater, and the feparation of the parts more difficult; and by confequence diminifhes the fluidity of the matter. Again, if the parts of the fluid are in any one place denfer or larger than in the others, the fluidity will be lefs in that place, becaufe there are fewer fuperficies where the parts can be feparated from each other. In thefe cafes I fuppofe the defect of the fluidity to be fupplied by the fmoothnefs or foftnefs of the parts, or fome other condition; otherwife the matter where it is lefs fluid, will cohere more, and be more fluggifh, and therefore will receive the motion more flowly, and propagate it farther than agrees with the ratio above affigned. If the veffel be not fpharical, the particles will move in lines, not circular, but anfwering to the figure of the veffel, and the periodic times will be nearly as the fquares of the mean diftances from the centre. In the parts between the centre and the circumference, the motions will be flower where the fpaces are wide, and fwifter where narrow; but yet the particles will not tend to the circumference

Sect. IX. of Natural Pbiloophy. is cumference at all the more for their greater fwiftnefs. For they then defcribe arcs of lefs curvity, and the conatus of receding from the centre is as much diminithed by the diminution of this curvature, as it is augmented by the increafe of the velocity. As they go out of narrow into wide faces they recede a little farther from the centre, but in doing fo are retarded; and when they come out of wide into narrow faces they are again accelerated; and fo each particle is retarded and accelerated by turns for ever. Thefe things will come to pafs in a rigid veffel. For the ftate of vortices in an infinite fluid is knowri by cor. 6 . of this propofition.
I have endeavoured in this propofition to inveftigate the properties of vortices, that I might find whether the celeftial phxnomena can be explained by them: For the phænomenon is this, that the periodic times of the Planets revolving about Jupiter, are in the fefquiplicate ratio of their diftances from Jupiter's centre; and the fame rule obtains alfo among the Planets that revolve about the Sun. And thefe rules obtain alfo with the greateft accuracy, as far as has been yet difcovered by aftronomical obfervation. Therefore, if thofe Planers are carried round in vortices revolving about Jupiter and the Sun, the vortices muft revolve according to that law. But here we found the periodic times of the parts of the vortex to be in the duplicate ratio of the diftances from the centre of motion; and this ratio cannot be diminifhed and reduced to the fefquiplicate, unlefs either the matter of the vortex be more fluid, the farther it is from the centre, or the refiffince atifing from the want of lubricity in the parts of the fluid, fhould, as the velocity with which the parts of the fluid are feparated goes on increafing, be augmentted with it in a greater ratio than that in which the velocity increafes. But neither of thefe fuppofition's feem reafonable. The more grofs and lefs fluid pars O 2
will
will tend to the circumference, unlefs they are heavy towards the centre. And tho', for the fake of demonftration, I propofed, at the beginning of this Section, an hypothefis that the refiftance is proportional to the velocity, neverthelefs, 'tis in truth probable that the refiftance is in a lefs ratio than that of the velocity. Which granted, the periodic times of the parts of the vortex will be in a greater than the duplicate. racio of the diftances from its centre. If, as fome think, the vortices move more fwiftly near the centre, then flower to a certain limit, then again fwifter near the circumference, certainly neither the fefquiplicate, nor any other certain and determinate ratio can obtain in them. Let philofophers then fee how that phxnomenon of the fefquiplicate ratio can be accounted for by vortices.

Proposition LIII. Theorem XLI.

Bodies, carried about in a vortex and returning in the fame orb, are of the fame denfity with the vortex, and are moved according to the fame law with the parts of the vortex, as to velocity and direction of motion.

For if any fmall part of the vortex, whofe particles or phyfical points preferve a given fituation among each other, be fuppofed to be congealed; this particle will move according to the fame law as before, fince no change is made either in its denfity, vis infita, or figure. And again, if a congealed or folid part of the vortex be of the fame denfity with the reft of the vortex, and be refolved into a fluid, this will move according to the fame law as before, except in fo far as its particles now become fluid may be moved among themfelves. Neglect therefore the motion of the particles

Sect. IX. of Natural Philofophy.
ticles among themfelves, as not at all concerning the progreffive motion of the whole, and the motion of the whole will be the fame as before. But this motion will be the fame with the motion of other parts of the vortex at equal diftances from the centre; becaufe the folid, now refolved into a fluid, is become perfectly like to the other parts of the vortex. Therefore a folid, if it be of the fame denfity with the matter of the vortex, will move with the fame motion as the parts thereof, being relatively at reft in the matter that furrounds it. If it be more denfe, it will endeavour more than before to recede from the centre; and therefore overcoming that force of the vortex, by which, being as it were kept in equilibrio, it was retained in its orbit, it will recede from the centre, and in its revolution defrribe a fpiral, returning no longer into the fame orbit. And by the fame argument, if it be more rare it will approach to the cencre. Therefore it can never continually go round in the fame orbit, unlefs it be of the fame denfity with the fluid. But we have fhewn in that cafe, that it would revolve according to the fame law with thofe parts of the fluid that are at the fame or equal diftances from the centre of the vortex.

Cor. 1. Therefore a folid revolving in a vortex, and continually going round in the fame orbit, is relatively quiefcent in the fluid that carries it.

Cor. 2. And if the vortex be of an uniform denfity, the fame body may revolve at any diftance from the centre of the vortex.

Scholivm.

Hence it is manifeft, that the Planets are not carried round in corporeal vortices. For according to the Co pernican hypothefis, the Planets going round the Sun, O_{3} revolve

198

 Mathematical Principles Book II.revolve in ellipfes, having the Sun in their common focus; and by radii drawn to the fun defcribe areas proportional to the times. But now the parts of a vortex can never revolve with fuch a motion. Let $A D, B E, C F$, (Pl.g. Fig.3.) reprefent three orbits defiribedabout the Sun S, of which let the utmoft circle $C F$ be concentric to the Sun; and let the aphelia of the two innermolt be A, B; and their perihelia D, E. Therefore a body revolving in the orb $C F$, defcribing, by a radius drawn to the Sun, areas proportional to the times, will move with an uniform motion. And according to the laws of aftronomy, the body revolving in the orb $B E$ will move flower in its aphelion B, and fwifter in its perihelion E; whereas, according to the laws of mechanics, the matter of the vortex ought to move more fwiftly in the narrow face between A and C, than in the wide face between D and F; that is, more fwiftly in the aphelion than in the perihelion. Now thefe two conclufions contradict each other. So at the beginning of the fign of Virgo, where the aphelion of Mars is at prefent, the diftance berween the orbits of Mars and Venus is to the diftance between the fame orbits at the beginning of the fign of Pifces, as about 3 to 2 ; and therefore the matter of the vortex between thofe orbits ought to be fwifter at the beginning of Pifces, than at the beginning of Virgo, in the ratio of 3 to 2 . For the narrower the fpace is, thro' which the fame quantity of matter paffes in the fame time of one revolution, the greater will be the velocity with which it paffes thro' it. Therefore if the Earth being relatively at reft in this celeftial matter fhould be carried round by it, and revolve together with it about the Sun, the velocity of the Earth at the beginning of Pifces would be to its velocity at the beginning of Virgo in a fefquialteral ratio. Therefore the Sun's apparent diurnal motion at the beginning of Virgo, ought to be above 70 minutes; and at the beginning of Pifces lefs than 48
minutes,

Plate E. I it. II.P. 198.

Fig. 19.173 .78.

Sect. IX. of Natural Pbilofophy. 199
minutes. Whereas on the contrary that apparent motion of the Sun is really greater at the beginning of Pifces than at the beginning of Virgo, as experience teftifies; and therefore the earth is fwifter at the beginning of Virgo than at the beginning of Pifces. So that the hypothefis of vortices is utterly irreconcileable with aftronomical phxnomena, and rather ferves to perplex than explain the heavenly motions. How thefe motions are performed in free fpaces without vortices, may be underftood by the firft baok; and I fhall now more fully treat of it in the following book of the Syfem of the World.

O_{4}
OF

B O O K III.

N the preceding books I have laid down the principles of philofophy; principles, not philofophical, but mathematical; fuch, to wit, as we may build our reafonings upon in philofophical enquiriés. There principles are, the laws and conditions of certain motions, and powers or forces, which chiefly have refpect to philofophy. But left they fhould have appeared of themfelves dry and barren, I have illuftrated them here and there, with fome philofophical fcholiums, giving an account of fuch things, as are of more general nature, and which philofophy feems chiefly to be founded on; fuch as the denfity and the refiftance of bodies,

Book III. Mathematical Principles, \&c. 201

bodies, faces void of all bodies, and the motion of light and founds. It remains, that from the fame pronciples, I now demonstrate the frame of the Syftem of the World. Upon this fubject, I had ii deed compos'd the third book in a popular method, that it might be read by many. But afterwards confidering that foch dupmes as had not fufficiently enter'd into the principles, could not eafilyadifcern the frength of the consequences, nor lay abide the prejudices to which they had been many years accuftomed; therefore to prevent the difputes which might be rais'd upon fuch accounts, I chore to reduce the fubfance of that book into the form of propofitions (in the mathematical way) which fhould be read by thole only, who had firft made themselves matters of the principles eftablifh'd in the preceding venu-cide books. Not that I would advife any one to the presvious ftudy of every propofition of thole books. For they ${ }^{2}$ abound with such as might coff too much time, even to reports of good mathematical learning. It is enough if one carefully reads the definitions, the laws of motion, and the firft three fections of the firft book. He may then pals on to this book, of the Syftem of the World, and consult fuch of the remaining prepofitions of the firft two books, as the references in this, and his occafions, Shall require.
omicto.
\qquad
eriádivo.

$$
1
$$

\qquad

[^0] aromatic: ted,

\qquad ai atc.
\qquad ,
\qquad (14)
 studied bite (promenament) las àrficusion

THE

R U L E S 0 F

Reasoning in Philosophy,

 razriamiento
Rule I.

We are to admit no more caufes of natural things, than fuch as are both true and fufficient to explain their appearances.
To this purpofe the philofophers fay, that Nature do's nothing in vain, and more is in vain, when lefs will ferve; For Nature is pleas'd with fimplicity, and affeets not the pomp of fuperfluous caufes.

Ruleif.

Therefore to the fame natural effects we muf, as far asipofible, affign the fame caufes.
As to refpiration in a man, and in a beaft; the de: feent of ftones in Europe and in America; the light of our culinary fire and of the Sun; the refection of light in the Earth, and in the Planets.

Rule III.

The qualities of bodies, which admit neither intenfion nor remiffion of degrees, and which are found to belong to all bodies within the reach of our experiments, are to be efteemed the univerfal qualities of all bodies/whatfgever fur.
For fince the qualities of bodies are only known to rus) by experiments, we are to hold for univerfal, all fuch as univerfally agree with experiments; and fuch as are not liable to diminution, can never be quite takee 2way, We are certainly not to relinquifh the evidence of experiments for the'fake of dreams and vain fictions of our own devifing; nor tre we to recede from the analogy of Ndture', which ufes to be Timple, and always confonant to it felf. We no otherways know the extenfion of bodies, than by our fenfes, nor do thefe reach it in all bodies; but becaufe we perceive extenfion in all that are fenfible, therefore we afcribe it univerfally to all others alfo. That abundance of bodies are hard we learn by experience: And becaufe the hardnefs of the whole arifes from the hardnefs of the parts, we therefore juffly infer the hardnefs of the undivided particles not only of the bodies we feel but of all others. That all bodies are impenetrable, we gather not from reafon, but from fenfation. The bodies which we handle we find impenetrable, and thence conclude impenetrability to be an univerfal property of all bodies whatfoever. That all bodies are moveable, and endow'd with certain powers (which we call the vircs inertig) of perfevering in their motion or in their reft, we only infer from the like properties obferv'd in the bodies which we have feen. The extenfion, hardnefs, impenetrability, mobility, and vis inertic of the whole, refult from the exten-
fion, hardnefs, impenerrability, mobility, and vires inertic of the parts: and thence we conclude the leaft particles of all bodies to be alfo all extended, and hard, and impenerrable, and moveable, and endow'd with their proper vires inertia. And this is the foundation of all philofophy. Moreover, that the divided but contiguous particles of bodies may be feparated from one another, is matter of obfervation; and, in the particles that remain undivided, our minds are able) to diftinguih yet leffer parts, as is mathetmatically demonftrated. But whether the parts fo diftinguifh'd, and not yet divided, may, by the powers of nature, be actually divided and feparated from one another, we cannot certainly determine. Yet had we the proof of but one experiment, that any undivided particle, in breaking a hard and folid body, fuffer'd a divifion, we might by virtue of this rule, conclude, that the undivided as well as the divided particles, may be divided and actually feparated to infinity.
imaneute Lafly, If it univerfally appears, by experiments and aftronomical obfervations, that all bodies about the Earth, gravitate towards the Earth; and that in proportion to the quantity of matter which they feverally contain; that the Moon likewife, according to the quantity of its matter, gravitates towards the Earth ; that on the other hand our Sea gravitates towards the Moon; and all the Planets mutually one towards another ; and the Comets in like manner towards the Sun; we muft, in confequence of this rule, univerfally allow, that all bodies whatfoever are endow'd with a principle of mutual gravitation. For the argument from the appearancessia concludes with more force for the univerfal gravitation of all bodies, than for their impenetrability ; of which among thofe in the celeftial regions, we have no experiments, nor any manner of obfervation. Not that I affirm gravity to be effential to bodies. By their tu wis infita I mean nothing but their vis inertia. This

of Natural Pbilofophy: 20 s

is immutable. Their gravity is diminifhed as they re-retriculer cede from the Earth.

Rule IV.

In experimental philofophy we are to look upon propofitions collected by general induction from veminda. phanomena as accurately or very nearly true, vevede ves notwithftanding any contrary bypothefes that annque may be imagined, till fuch time as other hartc. phonomena occur, by wich they may either be curviv' made more accurate, or liable to exceptions.

This rule we muft follow that the argument of induction may not be evaded by hypothefes.

THE

THE

Phenomena or Appearances.

Phenomenon I.

That the circumjovial planets, by radij drawn to Jupiter's center, defcribe areas proportionanal to the centimes of description, and that their periodic times, the fixed Stars being at (1) reft, are in the fefquiplicate proportion of their diftances from its center.

THIS we know from aftronomical observations. For the orbits of thee planets differ but infenfibly from circles concentric to Jupiter; and their motions in thole circles are found to be uniform. And all aftronomes agree, that their periodic times are in the fefquiplicate proportion of the femidiameters of their orbits : and fo it manifftly appears from the following tabe.

The periodic times of the Satellites of Jupiter.

$$
\begin{aligned}
& 1^{\mathrm{d}} \cdot 18^{\mathrm{h}} \cdot 27^{\mathrm{f}} \cdot 34^{\prime \prime} \cdot 3^{\mathrm{d}} \cdot 13^{\mathrm{h}} \cdot 13^{\prime} \cdot 42^{\prime \prime} \cdot 7^{\mathrm{d}} \cdot 3^{\mathrm{h}} \cdot 42^{\mathrm{c}} \cdot 36^{\prime \prime}: \\
& 16^{d} \cdot 16^{\mathrm{h}} \cdot 3^{2^{\prime}} \cdot 9^{\prime \prime} \text { : }
\end{aligned}
$$

The diftances of the Satellites from '7upiter's center.
Froms the obfervations of Borelli
Townley by the Microm.
Caffini by the Telefrope.
Caffini by the eclip. of tbe fatel.
From the periodic times.

1	2	3	4	
$\frac{1}{5}$	$8 \frac{2}{3}$	14		$\frac{2}{3}, 7$
5,52	888	13,47		$7^{2}\left(\begin{array}{l} \text { fimiain } \\ \text { ompor } \end{array}\right.$
5	${ }^{8}$	13 1465 185		${ }_{10} \int^{\text {Inpiicr. }}$

Mr. Pound has determined by the help of excellent aynda micrometers, the diameters of Jupiter and the elongation of its fatellites after the following manner. The great-despues eft heliocentric elongation of the fourth fatellite from Jupiter's centre was taken with a micrometer in a 15 foot nies. telefcope, and atthe mean diftance of Jupiter from the suchu Earth was found about $8^{\prime} .16^{\prime \prime}$. The elongation of the third fatellite was taken with a micrometer in a telefcope of 123 feet, and at the fame diftance of Jupiter from the Earth was found $4^{\prime} \cdot 42^{\prime \prime}$. The greateft elongations of the other fatellites at the fame diftance of Jupiter from the Earth, are found from the periodic times to be 2^{\prime}. $56^{\prime \prime}$. $47^{\prime \prime}$. and r^{\prime}. $5 \mathrm{r}^{\prime \prime}$. $6^{\prime \prime \prime}$.

The diameter of Jupiter taken with the micrometer in an 123 foot telefcope feveral times, and reduced to Jupiter's mean diftance from the Earth, proved always lefs than $40^{\prime \prime}$, never lefs than $38^{\prime \prime}$, generally $39^{\prime \prime}$. This diameter in fhorter telefcopes is $40^{\prime \prime}$, or $4 \mathrm{I}^{\prime \prime}$. For Jupiter's light is a little dilated by the unequal refrangibility of the rays, and this dilatation bears a lefs ratio to the diameter of Jupiter in the longer and more perfect telefcopes, than in thofe which are fhorter and lefs perfect. The times in which two fatellites, the firft and the third, paffed over Jupiter's body, were obferved, from the beginning of the ingrefs to the beginning of the egrefs, and from the complete ingrefs to the complete egrefs, with the long telefcope. And from the tranfit of the firft fatellite, the diameter of Jupiter at its mean diftance time in which the fhadow of the firf fatellite pafs'd over Jupiter's body, and thence the diameter of Jupiter at its mean diftance from the Earth came out about 37". Let us fuppofe its diameter to be $37 \frac{11^{\prime \prime}}{}$ very nearly, and then the greateft elongations of the firft, fecond, third and fourth farellite will be refpectively equal to 5,965 , $9,494,15,141$, and 26,63 femidiameters of Jupiter.

Phetomenon. II.

That the circumfaturnal planets, by radij drawn to Saturn's center, defcribe areas proportional to the times of defcription, and that their periodic times, the fixed Stars being at reft, are in the fefquiplicate proportion of their diftances from its centre.

For as Cafjini from his own obfervations has determin'd, their diftances from Saturn's centre, and their periodic times are as follow.

> The periodic times of the fatellites of Saturn. $1^{\mathrm{d}} \cdot 21^{\mathrm{h}} \cdot 18^{\prime} \cdot 27^{\prime \prime} \cdot 2^{\mathrm{d}} \cdot 17^{\mathrm{h}} \cdot 41^{\mathrm{\prime}} \cdot 22^{\prime \prime} \cdot 4^{\mathrm{d}} \cdot 12^{\mathrm{h}} \cdot 25^{\prime} \cdot 12^{\prime \prime} \cdot$ $15^{\mathrm{d}} \cdot 22^{\mathrm{h}} \cdot 4^{1^{\prime}} \cdot 14^{\prime \prime} \cdot 79^{\mathrm{d}} \cdot 7^{\mathrm{h}} \cdot{48^{\prime} \cdot 00^{\prime \prime} .}^{\text {and }}$

The diftances of the fatellites from Saturn's center, in femidiameters of its Ring.

The greateft elongation of the fourth fatellite from Saturn's centre is commonly determined from the obfervations to be eight of thofe femidiamerers very near-:

Book III. of Natural Pbilofophr: 209

ly. But the greateft elongation of this fatellite from Saturn's centre, when taken with an excellent micrometer in M. Hisugens's relefcope of 123 feet, appaared to be eight femidiameters and 10 of a femidiameter. And from this obfervation and the periodic times, the diftances of the fatellites from Saturn's centre in femidiameters of the Ring are 2,1. 2,60. 3,75. \&,7. and 25,35 . The diameter of Saturn obferved in the fame telefcope was found to be to the diameter of the Ring as 3 to 7 , and the diameter of the Ring, May 28, 29. 1719. was found to be $43^{\prime \prime}$. And thence the diameter of the Ring when Saturn is at its mean diftance from the Earth is $42^{\prime \prime}$, and the diameter of Saturn $18^{\prime \prime}$. Thefe things appear fo in very long and excellent telefcopes, becaule in fuch telefcopes the apparent magnitudes of the heavenly bodiessbeara greater proportion to the dilatation of light in the extremities of thofe bodies, than in fhor-mas juquu wo ter telefcopes. If we then reject all the fpurious light, the diameter of Saturn will not amount to more than $16^{\prime \prime}$.

Phenomenon III.

That the five primary Planets, Mercury, Venus; Mars, Fupiter and Saturn, with their feveral orbits, encompafs the Sun.
That Mercury and Venus revolve about the Sun, is evident from their moon-like appearances. When they whine out with ayfull face, they are in refpect of us, beyond or above the Sun; when they appear half-full, they are about the fame height on one fide or other of the Sun; when horn'd, they are below or between, us and the Sun, and they are fometimes, $2 y$ ben directly under, feen like fpots traverfing the Sun's disk. That Mars furrounds the Sun, is as plain from its full face when one its conjunction with the Sun, and from the gibbole figure which it fhews in its quadratures. And the

210 Mathematical Principles Book III. fame thing is demonftrable of Jupiter and Saturn, from their appearing full in all fituations; for the fhadows of their fatellites that appear fomerimes upon their disks make it plain that the light they fhine with, is not their own, but borrowed from the Sun.
proplia

Phenomenon IV.

That the fixed Stars being at reft, the periodic times of the five primary Planets, and (whether of the Sun about the Earth, or) of the Earth about the Sun, are in the fef. quiplicate proportion of their mean diftances from the Sun.

This proportion, firft obferv'd by Kepler, is now res 'ceiv'd by all aftronomers. For the periodic times are the fame, and the dimenfions of the orbits are the fame, wherher the Sun revolves about the Earth, or the Earth about the Sun. And as to the meafures of the periodic times, all aftronomers are agreed about them. But for the dimenfions of the orbits, Kepler and Bullialdus, above all others, have determin'd them from obfervations with the greateft accuracy: and the mean diftances correfponding to the periodic times, differ but infenfibly from thofe which they have affign'd, and for the moft part fall in between them ; as we may fee from the following Table.

The periodic times, with refpect to the fixed Stars, of the Planets and Earth revolving about the Sum, in days and decimal parts of a day.
87,9692.

Book III. of Natural Philofophy. $2 T E$
The mean dijtances of the Planets and of the Earrb from the Sun.
 To Bullialdus $\quad 100000 . \quad 72398$. 38989. $\begin{array}{llll}\text { To the periodictimes } 100000 . & 72333 . & 38710 .\end{array}$ As to Mercury and Venus, there can be no doubt dudar about their diftances from the Sun ; for they are determin'd by the elongations of thofe Planets from the Sun. And for the diftances of the fuperior Planets, all difpute is cut off by the eclipfes of the fatellites of Jupiter. For, by thofe eclipfes, the pofition of the hiadow, which Jupiter projects, is dctermin'd ; whence we have the heliocentric longitude of Jupiter. And from its heliocentric and geocentric longitudes com: pard together, we determine its diftance.

Phenomenon V.

Tben the primary Planets, by radij drawn to the Earth, defcribe areas no wije proportional to the times: But that the areas, which they defcribe by radij drawn to the Sun, are proportional to the times of defcription.

For to the Earth they appear fometimes direct, fometimes ftationary, nay and fometimes retrograde. But from the Sun they are always feen direct, and to proceed with a motion nearly uniform, that is to fay, a fittle fwifter in the peribelion and a little flower in the poo maiveri P 2 aphelion
aphelion diftances, fo as to maintain an equality in the
defcription of the areas. This is a noted propofition
collide cone-
outre among aftronomers, and particularly demonftrable in Jupiter, from the eclipfes of his fatellites; by the help of which eclipfes, as we have fid, the heliocentric Tongitudes of that Planet, and its diftances from the Sun are determined.

Phenomenon VI.

That the Moon by a radius drawn to the Earth's centre, describes an area proportional to the time of description.
This we gather from the apparent motion of the Moon, compar'd with its apparent diameter. It is true that the motion of the Moon is a little difturb'd by the action of the Sun. But in (laying down) the fe phrnomena, I neglect thole fall and inconfiderable errors. dey rue

THE

THE

PROPOSITIONS.

Proposition I. Theorem I.

That the forces by which the circumjovial Pla: nets are continually (drawe off from rectilinear motions, and retain'd in their proper
 ciprocally as the Squares of the diftances of the places of thofe Planets from that cen. tre.

THE former part of this propofition appears from phan. I. and prop. 2. or 3. book 1. The latter from phan. I. and cor. 6 . prop. 4. of the fame book.

The fame thing we are to underftand of the Planers which encompals Saturn, by phen. 2: circundan

Propo:

Proposition II. Theorem II.

That the forces by which the primary Planets are continually drawn off from rectilinear motions, and retain'd in their proper orbits, tend to the Sun; and are reciprocally as the Squares of the diftances of the places. of thofe Planets from the Sun's centre.

The former part of the propofition is manifeft from phxn. 5. and prop. 2. book I. The latter from phen. 4. and cor. 6. prop. 4. of the fame book. But this part of the propofition is, with great accuracy; demonftrable from the quiefcence of the aphelion points. For a very fmall aberration from the reciprocal duplicate proportion, would (by cor. I. prop. 45. book I.) produce a motion of the apfides, fenfible enough in every fingle revolution, and in many of them enormounly great.

Proposition III. Theorem III.

That the force by which the Moon is retain'd in its orbit, tends to the Earth; and is reciprocally as the (quare of the diftance of its place from the Earth's centre.

The former part of the propofition is evident from phxn. 6 . and prop. 2 . or 3 . book 1. The latter from the very flow motion of the Moon's Apogee; which in every 'fringte revolution amounting but to $3^{\circ} 3^{\prime}$. in consequestia, may be neglected. For(by cor. I. prop. 45 . book 1.) it appears, that if the diftance of the Moon from the Earth's centre, is to the femidiameter of the Earth,

Earth, as D to I; the force, from which fuch a motion will refult, is reciprocally as $D^{2} \frac{4}{2+3} i, c$. reciprocally as the power of D , whofe exponent is $2 \frac{4}{2+3}$, that is to fay, in the proportion of the diftance fomething greater than reciprocally duplicate, but which comes $59 \frac{1}{4}$ times nearer to the duplicate than to the monuri.e. triplicate proportion. But in regard that this motion is owing to the action of the Sun, (as we Mall afterwards thew) it is here to be neglected. The action of mificu the Sun, attracting the Moon from the Earth, is nearly as the Moon's diftance from the Earth; and therefore (by what we have fhewed in cor. 2. pr. 45 . book 1.) is to the centripetal force of the Moon, as 2 to 357,45 , or nearly fo; that is, as I to $178 \frac{22}{4}$. . And if we neglect fo inconfiderable a force of the Sun, the remaining force, by which the Moon is retained in its orb, will be reciprocally as D^{2}. This will yet more fully appear from comparing this force with the force of gravity, as is done in the next propofition.

Cor. If we augment the mean centripetal force by which the Moon is retained in its orb, firft in the proportion of $177 \frac{25}{40}$ to $178 \frac{29}{40}$, and then in the duplicate proportion of the femidiameter of the Earth to the mean diftance of the centres of the Moon and Earth; we fhall have the centripetal force of the Moon at the furface of the Earth; fuppofing this force, in defcending to the Earth's furface, continually to increafe in the reciprocal duplicate proportion of the height.

Proposition IV. Theorem IV.

That the Moon gravitates towards the Earth 3 and, by the force of gravity is continually (drawn offfrom a rectilinear motion, and retained in its orbit:
The mean diftance of the Moon from the Earth in the fyzygies in femidiameters of the Earth, is, accorP 4
ding
ding to Ptolomy and molt Astronomers, 59, according to Vendelin and Huygens 60 , to Copernicus $60 \frac{1}{3}$, to Street $60 \frac{2}{5}$, and to Tycho $56 \frac{1}{2}$. But Tycho, and all that follow his tables of refraction, making the refractions of the Sun and Moon (altogether againft the nature of light) to exceed the refractions of the fixt Stars, and that !by four or five minutes near the Horizon, didfar thereby increafe the Moon's horizontal parallax, by a like number of minutes, that is, by a twelfth, or ifteenth part of the whole parallax. Correct this error, and the diffance will become about $60 \frac{1}{2}$ femidiamerers of the Earth, near to what others have affigned. Let us affume the mean diftance of 60 diameters in the fyzy gies; and fuppofe one revolution of the Moon, in reflect of the fixt ftars, to be completed in $27^{\mathrm{d}} \cdot 7^{\mathrm{h}} \cdot 43^{\prime}$, as Aftronomers have determined; and the circumference of the Earth to amount to 123249600 Paris feet, as the French have found by menfuration. And now if a her ia $^{\text {. }}$ we imagine the Moon, deprived of all motion, to be let go, fo as to defend towards the Earth with the impulfe of all that force by which (by cor. prop. 3.) it is retained in its orb; it will, in the space of one minute of time, defcribe in its fall $15 \frac{3}{1}_{12}^{2}$ Paris feet. pres This we gather by a calculus, founded either upon prop. 36. book I. or (which comes to the fake thing) upon cor. 9. prop. 4 . of the fame book. For the verfed fine of that arc, which the Moon, in the face of one minute of time, would by its mean motion defcribe at the diftance of 60 femidiameters of the Earth, is nearly can $15 \frac{1}{12}$ Paris feet, or more accurately 15 feet, \bar{i} inch, and 1 line $\frac{4}{9}$. Wherefore, fine that force, in approaching to the Earth, increafes in the reciprocal duplicate proportion of the diftance, and, upon that account, at the furface of the Earth, is 60×60 times greater, than at the Moon; a body in our regions, falling with that force, ought, in the face of one minote of time, to defcribe $60 \times 60 \times 155^{\frac{1}{2}}$ Paris fest, and,

Book III. of Natural Pbilofophy: 217 and, in the fpace of one fecond of time, to defcribe $15 \frac{x}{L_{2}}$ of thofe feet; or more accurately is feet, r inch, and I line $\frac{\underset{y}{9} . \text {. And with this very force we actu- }}{\text { and }}$ ally find that bodies here upon Earth do really defcend. For a pendulum ofcillating feconds in the latitude of Paris, will be 3 Paris feet, and 8 lines $\frac{1}{2}$ in length, as Mr. Huygens has obferved. And the fpace which a heavy body defcribes by falling in one fecond of time, is to half the length of this pendulum, in the duplicate ratio of the circumference of a circle to its diameter, (as Mr. Huygens has alfo (hewn) and is therefore is Paris feet, I inch, I line $\frac{7}{9}$. And therefore the force by which the Moon is retained in its orbit becomes, at the very furface of the Earth, equal to the force of gravity which we obferve in heavy bodies there. And therefore (by rule 1. \& 2.) the force by which the Moon is retained in its orbit, is that very fame force, which we commonly call gravity. For, were gravity aifuera another force different from that, then bodies defcending to the Earth with the joint impulfe of both forces would fall with a double velocity, and in the face of one fecond of time would defcribe $30 \frac{1}{6}$ Paris feet; altggether againft experience.
noverim this calculus is founded on the hypothefis of the Earth'sftanding ftill. For, if both Earth and Moon move about the Sun, and at the fame time about their common centre of gravity; the diftance of the centres of the Moon and Earth from one another, will be $60 \frac{1}{2}$ femidiameters of the Earth; as may be found by a computation from prop. 60. book 1 .

Scholium.

The demonftration of this propofition may be more diffufely explained after the following manner. Suppofe feveral moons to revolve about the Earth, as in the fy-
ftem
ftem of Jupiter or Saturn; the periodic times of there moons (by the argument of indaction) would obferve the fame law which Keplor found to obtain among the Planets; and therefore their centripetal forces would be reciprocally as the fquartes of the diftances from the centre of the Earth, by prop. 1. of this book. Now if the loweft of thefe were very fmall, and were fo near the Earth as almoft to touch the tops of the higheft mountains; the centripetal force thereof, retaining it in its orb, would be very nearly equal to the weights of any terreftrial bodies that fhould be found upon the tops of thofe mountains, as may be known by the foregoing computation. Therefore if the fame little moon thould be deferted by its centrifugal force that carries it through its orb, and fo be difabled from going onwards therein, it would defcend to the Earth; and that whth the fame velocity as heavy bodies do actually fall with, upon the tops of thofe very mountains; becaufe of the equality of the forces that oblige them both to defcend. And if the force by which that loweft moon would defcend, were different from gravity, and if that moon were to gravitate towards the Earth, as we find terreftrial bodies do upon the tops of mountains, it would then defcend with twice the velocity, as being impelled by both thefe forces confpiring together. Therefore fince both thefe forces, that is, the gravity of heavy bodies, and the centripetal forces of the moons, refpect the centre of the Earth, and are fimilar and equal between themfelves, they will (by rule I. and 2.) have one and the fame caufe. And therefore the force which retains the Moon in its orbit, is that very force which we commonly call gravity; becaufe otherwife this little moon ar the top of a mountain, mult either be without gravity, or fall twice as Iwiftly as heavy bodies ufe to do.

Proposition V. Theorem V.

That the circumjovial Planets gravitate towards 7upiter; the circumfaturnal towards Saturn; the circumfolar towards the Sun; and by the forces of their gravity are (draion ann in is or off from rectilinear motions, and retained in curvilinear orbits.

For the revolutions of the circumjovial Planets about Jupiter, of the circumfaturnal about Saturn, and of Mercury and Venus, and the other circumfolar Planets about the Sun, are appearances of the fame fort with the revolution of the Moon about the Earth; and therefore by rule 2. muft be owing to the fame fort of caufes; efpecially fince it has been demonftrated, that the forces, upon which thofe revolutions depend, tend to the centres of Jupiter, of Saturn, and of the Sun; and that thofe forces, in receding from Jupiter, from Saturn, and from the Sun, decreafe in the fame proportion, and according to the fame law, as the force of gravity does in receding from the Earth.

Cor. I. There is therefore a power of gravity tending to all the Planets. For doubrtefs Venus, Mercury, and the reft, are bodies of the fame fort with Jupiter and Saturn. And fince all attraction (by law 3.) is mutual, Jupiter will therefore gravitate towards all his own fatellites, Saturn towards his, the Earth towards the Moon, and the Sun towards all the primary. planets.

Cor. 2. The force of gravity, which tends to any one Planet, is reciprocally as the fquare of the diftance of places from that Planet's centre.

Cor. 3. All the Planets do mutually gravitate towards one another, by cor. 1. and 2. And hence

220 Mathematicai Principles Book III. it is, that Jupiter and Saturn, when near their conjunction, by their mutual attractions fenfibly difturb each other's motions. So the Sun difturbs the motions of the Moon; and both Sun and Moon difturb our Sea, as we fhall hereafter explain.: explicer
mlo huturo

Scholivm.

The force which retains the celeftial bodies in their orbits, has been hitherto called centripetal force. Bue ic being now made plain, that it can be no other than a gravitating force, we fhall hereafter call it gravity. For the caufe of that centripeal force, which retains the Moon in its orbit, will extend it felf to all the Planets by rule 1. 2. and 4.

Proposition VI. Theorem VI.

That all bodies gravitate towardsievery, Planet; and that the Weights of bodies towards any the rame Planet, at equal diftances from the centre of the Planet, are proportional to the quantities of matter which they Severally contain.

It has been, now of a long time, obferved by others, that all forts of heavy bodies, (allowance being made for the inequality of retardation, which they fuffer from a fmall power of refiffance in the air) defcend to the Earth from equal beights in equal times: and that equality of times we may diftinguifh to a great accuracy, by the help of pendulums. I tried the thing in gold, fill ver,' lead, glafs, fand, common falt, wood, water, and wheat. I provided two wooden boxes, round and e+Figo
qual. I filled the one with wood, and fufpended an equal weight of gold (as exactly as I could) in the centre of ofcillation of the other. The boxes hanging by equal threads of II feet, made a couple of pendulums perfectly equal in weight and figire, and equally receiving the refiftance of the air. And placing the one by the other, I obferved them to play together forwatds and backwards, for a long time, with equal vibrations. And therefore the quantity of matter in the gold (by cor. I. and 6. prop. 24. book 2.) was to the quantity of matter in the wood, as the action of the motive force (or vis motrix) upon all the gold, to the action of the fame upon all the wood; that is, as the weight of the one to the weight of the other. And the like happened in the other bodies. By thefe expe-veontecado riments, in bodies of the fame weight, I could manifeftly have difcovered a difference of matter lefs than the theufandth part of the whole, had any fuch been. But, without all doubt, the nature of gravity towards the Planets, is the fame as towards the Earth. For; fhould we imagine our terreftrial bodies removed to the orb of the Moon, and there, together with the Moon, deprived of all motion, to be let go, fo as to fall together towards the Earth: it is certain, from what we have demonftrated before, that, in equal times, they would defcribe equal fpaces with the Moon, and of confequence are to the Moon, in quantity of matter, as their weights to its weight. Moreover, fince the fatellites of Jupiter perform their revolutions in times which obferve the fefquiplicate proportion of their diftances from Jupiter's centre, their accelerative gravities towards Jupiter will be reciprocally as the fquares of their diftances from Jupiter's centre; that is, equal, at equal diftances. And therefore, thefe fatellites, if fuppofed to fall tovards Fupiter from equal heights, would defcribe equal fpaces in equal times, in like manner as heavy bodies do on our Earth. And by the riciadoi fame
fame argument, if the circumfolar Planets were fuppofed to be let fall at equal diftances from the Sun, they would, in their defcent towards the Sun, defribe equal Spaces in equal times. But forces, which equally accelerate unequal bodies, muft be as thofe bodies; thate is to fay, the weights of the Planets towards the Sun muft be as their quantities of matter. Further, that the weights of Jupiter and of his fatellites towards the Sun are proportional to the feveral quantities of their matter, appears from the exceeding regular motions of the fatellites, (by cor. 3 .prop. 65.book 1.) For if forme of thofe bodies were more ftrongly attratted to the Sun in proportion to their quantity of matter, than others; the motions of the fatellites would be difturbed by that inequality of attraction (by cor. 2. prop. 65. book I.) If, at equal diftances from the Sun, any fatellite in proportion to the quantity of its matter, did gravitate towards the Sun, with a force greater than Jupiter in proportion to his, according to any given proportion, fuppofe of d to e; then the diftance between the centres of the Sun and of the fateilite's orbit would be always greater than the diftance between the centres of the Sun and of Jupiter, nearly in the fubduplicate of that proportion; as by fome computations I have found. And if the fatellite did gravitate towards the Sun with a force, leffer in the proportion of e to d, the diftance of the centre of the fatellite's orb from the Sun, would be lefs than the diftance of the centre of Jupiter from the Sun, in the fubduplicate of the fame proportion. Therefore if, at equal diftances from the Sun, the accelerative gravity of any fatellite towards the Sun were greater or lefs than the accelerative gravity of Jupiter towards the Sun, but by one t-s.- part of the whole gravity; the diftance of the centre of the fatellite's orbit from the Sun would be greater or lefs than the diftance of Jupiter from the Sun, by one sot. part of the whole diftance; that is, 2

Book III. of Natural Philofophy.

 223 by a fifth part of the diftance of the utmoft fatellite mas dutaunte from the centre of Jupiter; an excentricity of the orbit, which would be very fenfible. But the orbits of the fatellites are concentric to Jupiter, and therefore the accelerative gravities of Jupiter, and of all its fatellites towards the Sun, are equal among themfelves. And by the fame argument, the weights of Saturn and of his fatellites towards the Sun, at equal diftances from the Sun, are as their feveral quantities of matter: and the weights of the Moon and of the Earth towards the Sun, are either none, or accurately proportional to the maffes of matter which they contain. But fome they are by cor. 1. and 3 . prop. 5 .But further, the weights of all the parts of every Planet towards any other Planet, are one to another as the matter in the feveral parts. For if fome parts did gravitate more, others lefs, than for the quantity of their matter; then the whole Planet, according to the fort of parts with which it moft abounds, would gravitate more or lefs, than in proportion to the quantity of matter in the whole. Nor is it of any mo-ni ment, whether thefe parts are external or internal. For, if, for example, we fhould imagine the terreftrial bodies with us to be raifed up to the orb of the Moon, to be there compared with its body: If the weights of fuch bodies were to the weights of the external parts of the Moon, as the quantities of matter in the one and in the other refpectively; but to the weights of the internal parts, in a greater or lefs proportion, then likewife the weights of thofe bodies would be to the weight of the whole Moon, in a greater or lefs proportion; againft what we have fhewed above.
Cor. I. Hente the weights of bodies do not depend upon their forms and textures. For if the weights could be altered with the forms, they would be greater or lefs, according to the variery of forms, in equal matter; altogether againft experience.

Cor. 2. Universally, all bodies about the Earth gravitate towards the Earth; and the weights of all, at equal diftances from the Earth's centre, are as the quagtitis of matter which they feverally contain. This is the quality of all bodies, within the reach of our ex periments; and therefore, (by rule 3.) to be affixmed of all bodies whatfoever. If the ether, or any other body, were either altogether void of gravity, or were to gravitate lees in proportion to its quantity of matter ; then, becaufe (according to Arifotle, Desc Carutes, and others) there is no difference betwixt that and other bodies, but in mere form of matter, by a fucceffive change from form to form, it might be changed at lat into a body of the fame condition with tho fe which gravitate molt in proportion to their quantity of matter; and, on the other hand, the heavieft bodies, acquiring the fort form of that body, might by degrees, quite lofe their gravity. And therefore the weights would depend upon the forms of bodies, and with thole forms might be changed, contrary to what was proved in the preceding corollary.
leonor
Cor. 3. All spaces are not equally Full. For if all spaces were equally full, then the fpecific gravity of the fluid which fills the region of the air, on account of the extreme denfity of the matter, would fall nothing fort of the Specific gravity of quick-filyer, or gold, or any other the molt denfe body; and therefore, neither gold, nor any other body, could defend in air.""For bodies do not defend in fluids, unless they are Specifically heavier than the fluids. And if the quantity of matter in a given face, can, by any rarefaction, be diminished, what mould hinder a di-: minution to infinity?

Cor. 4. If all the folid particles of all bodies are of the fame denfity, nor can be ratified without pores 2 void face or vacuum mut be granted. By bodies

Book III. of Natural Pbilosophy:

of the fame denfity, I medn thofe, whofe vires inertia are in the proportion of their bulks. = volumemen

Cor. 5. The power of gravity is of a different nature from the power of magnetifm. For the magnetic attraction is not as the/ matter attracted. Some bodies are attra\&ted more by the magnet, others lefs; moft bodies not at all. The power of magnetifm, in one and the fame body, may be increafed and diminifhed; and is fometimes far ftronger, for the quantity of matter, than the power of gravity; and in receding from the magnet, decreafes not in the duplicate, but almoft in the triplicate proportion of the diftance, as nearly as I could, judge from fome rude obfervations. Las

Proposition VII. Theorem VII.

That there is a power of gravity tending to all bodies, proportional to the feveralquantities of matter which they contain.

That all the Planets mutually gravitate one towards another, we have prov'd before; as well as that the force of gravity towards every one of them, confider'd apart, is reciprocally as the fquare of the diftance of places from the centre of the planet. And thence (by prop. 69. book. I. and its corollaries) it follows, that the gravity tending towards all the Planets, is proportional to the matter which they contain.

Moreover, fince all the parts of any planet A gravitate towards any orher planet B; and the gravity of every part is to the gravity of the whole, as the matter ca win win of the part to the matter of the whole; and (by law 3.) to every action correfponds an equal re-action : therefore the planet B will, on the other hand, gravitate towards all the parts of the planet A; and its gravity toWards any one part will be to the gravity towards the Vol. II.
 whole,
whole, as the matter of the part to the matter of the whole. Q.E.D.

Cor. I. Therefore the force of gravity towards any whole planet, arifes from, and is compounded of, the forces of gravity towards all its parts. Magnetic and electric attractions afford us examples of this. For all attraction towards the whole aries from the attractions towards the feveral parts. The thing may be eafily underftood in gravity, if we confider a greater planet, as form'd of a number of lifer planets, meeting together in one globe. For hence it would appear that the force of the whole mull arife from the forces of the component parts. If it is objected, that, according to this law, all bodies with us mut mutually gravitate one towards another, whereas no fuch gravitation any where appears : I anfwer, that fince the gravitation towards there bodies is to the gravitation towards the whole Earth, as there bodies are to the whole Earth, the gravistation towards them muff be' far leis than to fall under the obfervation of our fenfes.

Cor.2. The force of gravity towards the feveral equal particles of any body, is reciprocally as the Iquare of the diftance of places from the particles; as appears from cor. 3. prop. 74. book I.

Proposition. VIII. Theorem Villi.

In two Spheres mutually gravitating each towards the other, if the matter in places on all fides round about and equidiftant from the centres, is fimilar; the weight of either Sphere towards the other, will be reciprocally as the Square of the diffance between their centres.
After I had found that the force of gravity towards 2 whole planet did arife from, and was compounded of

Book III. of Natural Pbilofophy. 227
the forces of gravity towards all its parts; and towards every one part, was in the reciprocal proportion of the fquares of the diftances from the part: I was yet in oum doubt, whether that reciprocal duplicate proportion did accurately hold, or but nearly fo, in the total force com- vale-ficne pounded of To many partial ones. For it might be that the proportion which accuratetely enough took place in greater diffances, thould bywide of the ryyth near the furface of the planet, where the liffances of the particles are unequal, and their fituation diffimilar. But by the help of prop. 75 . and 76 . book 1. and their corollaries, I was at laft fatisfy'd of the truth of the propofition, as it now lies before us.

Cor. 1. Hence we may find and compare together the weights of bodies towards different planets. For the weights of bodies revolving in circles about planets, are (by cor. 2. prop.4. book 1.) as the diameters of the circles directly, and the fquares of their periodic times reciprocally; and their weights at the furfaces of the planets, or at any other diftances from their centres, are (by this prop.) greater or lefs, in the reciprocal duplicate proportion of the diftances. Thus from the periodic times of Venus, revolving about the Sun, in 224^{d}. $1 \sigma_{4}^{\frac{1}{4}}$. of the utmoft circumjovial fatellite revolving about Jupiter, in $1 \sigma^{1} \cdot 1 \sigma_{1,}{ }^{h}$; of the Hugenian fatellite about Saturn in $15^{\mathrm{d}} .22 \frac{2 \mathrm{~h}}{\mathrm{~h}}$; and of the Moon about the Earth in $27^{\text {d }} \cdot 7^{\text {h }} \cdot 43^{\text {j }}$; compared with the mean diftance of Venus from the Sun, and with the greateft heliocentric elongations of the ourmoft circumjovial fatellite from Jupiter's centre, $8^{\prime}, 16^{\prime \prime}$. of the Hugenian fatellite from the centre of Saturn, $3^{\prime} \cdot 4^{\prime \prime}$, and of the Moon from the Earth, $10^{\prime} .33^{\prime \prime}$; by computation I found, that the weight of equal bodies, at equal dittances from the centres of the Sun, of Jupiter, of Saturn, and of the Earth, towards the Sun, Jupiter, Saturn, and the Earth, were one to another, as I, $\frac{1}{1067}, \frac{1}{3021}$, and $\frac{1}{169282}$ refpetively. Then becaufe as

[^1]the diftances are increafed or diminifhed, the weights are diminihhed or increafed in a duplicate ratio; the weights of equal bodies towards the Sun, Jupiter, Saturn, and the Earth, at the diftances 10000, 997, 791 and 109 from their centres, that is, at their very fuperficies, will be as 10000, 943,529 and 435 refpectively. How much the weights of bodies are at the fuperficies of the Moon, will be 'Thewn hereafter.

Cor. 2. Hence likewife we difotwer the quantity of matter in the feveral Planets. For their quantities of matter are as the forces of gravity at equal diftances from their centres, that is, in the Sun, Jupiter, Saturn, and the Earth, as $1, \frac{1}{1067}, \frac{1}{3021}$, and $\frac{1}{169282}$ refpectively. If the parallax of the Sun be taken greater or lefs than $10^{\prime \prime}, 30^{\prime \prime \prime}$, the quantity of matter in the Earth mult be augmented or diminifhed in the triplicate of that proportion.

Cor. 3. Hence alfo we find the denfities of the Planets. For (by prop. 72. book 1.) the weights of equal and fimilar bodies towards fimilar fpheres, are, at the furfaces of thofe fpheres, as the diameters of the fpheres. And therefore the denfities of diffimilar fpheres are as thofe weights applied to the diameters of the fpheres. But the true diameters of the Sun, Jupiter, Saturn, and the Earth, were one to another as 10000, 997, 791 and 109; and the weights towards the fame, as 10000 , 943, 529, and 435 refpectively; and therefore their denfities are as $100,94 \frac{1}{2}, 67$ and 400 . The denfity of the Earth, which comes out by this computation, does not depend upon the parallax of the Sun, but is determined by the parallax of the Moon, and therefore is here truly defin'd. The Sun therefore is a little denfer than Jupiter, and Jupiter than Saturn, and the Earth four times denfer than the Sun; for the Sun, by its great heat, is kept in a fort of a rarefy'd fate. The Moon is denfer than the Earth, as Mall appear afterwards.

Cor.

COR. 4. The fmaller the Planets are, they are, cateris paribus, of fo much the greater denfity. For fo the powers of gravity on their feveral furfaces, come nearer to equality. They are likewife, cateris paribus, of the greater denfity, as they are nearer to the Sun. So Jupiter is more denfe than Saturn, and the Earth than Jupiter. For the Planets were to be placed at different diftances from the Sun, that according to their degrees of denfity, they might enjoy a greater or lefs proportion of the Sun's heat. Our water, if it were remov'd as far as the orb of Saturn, would be converted into ice, and in the orb of Mercury would quickly fly away in va-rumidement pour. For the light of the Sun, to which tis heat is proportional, is feven times denfer in the orb of the Mercury than with us: and by the thermometer I have found, that a fevenfold heat of our funmer-fun will make water boil. Nor are we to doubt, that the matter of Mercury is adapted to its heat, and is therefore more denfe than the matter of our Earth; fince, in a denfer matter, the operations of nature require a ftronger heat.

Proposition IX. Theorem IX.

That the force of gravity, confider'd downwards from the furface of the planets, decreafes nearly in the proportion of the difo casi tances from their centres.

If the matter of the planet were of an uniform den: fity, this propofition would be accurately true, (by prop. 73. book I.) The error therefore can be no greater than what may arife from the inequality of the denfity.

Proposition X. Theorem \mathbf{X}.

That the motions of the Planets in the beavens may fubfit an excceding long time.

In the fch clium of prop. 40 . book 2. I have finew'd that globe of water, frozen into ice, and moving freely in our air, in the time that it would defcribe the length of its femidiameter, would lofe by the refiftance of the air $\frac{1}{4586}$ part of its motion. And the fame proportion holds nearly in all globes, (how great foever, and mov'd with whatever velocity. But that out globe of earth is of greater denfity than it would be if the whole confifted of water only, I thus make out. If the whole confifted of water only, whatever was of lefs denfity than water, becaufe of its lefs fpecific gravity, wou'd emerge and float above. And upon this account, if a globe of terreftrial matter, cover'd on all fides with water, was lefs denfe than water, it would emerge fomewhere; and the fubfiding water falling back, would be gathered to the opppofite fide. And fuch is the condition of our Earth, which in a great meafure is covered with feas. The Earth, if it was not for its greater denfity, would emerge from the feas, and, according to its degree of levity, would be raifed more or lefs above their furface, the water of the feas flowing backwards to the oppofite fide. By the fame argument, the pots of the Sun, which float upon the lucid matter thereof, are lighter than that matter. And howevernta the Planets have been form'd, while they were yet in fluid maffes, all the heavier matter fubfided to the centre. Since therefore the common matter of our Earth on the furface thereof, is about twice as heavy as water, and a little lower, in mines, is found about three or four, or even five times more heavy; it is probable, that the quantity of the whole matter of the Earth may
be five or fix times greater than if it confilted all of water; efpecially fince I have before fhew'd, that the Earth is about four times more denle than Jupiter. If therefore Jupiter is a little more denfe than water, in the fpace of thirty days, in which that planet defcribestreinta the length of 459 of its femidiameters, it would, in a medium of the lame denfity with our air, lofe almoft a kenth part of its motion. But fince the refiftance of cucima mediums decreafes in proportion to their weight or denfity, fo that water, which is $13 \frac{1}{5}$ times lighter than quickfilver, refifts lefs in that proportion; and air, which is 860 times lighter than water, refifts lefs in the fame proportion: Therefore in the heavens, where the weight of the medium, in which the Planets move, is immenfely diminifhed, the refiftance will almioft vainuaverve nifh.

It is fhewn in the fcholium of prop. 22. book 2. that at the height of 200 miles above the Earth, the air is more rare than it is at the fuperficies of the Earth, in the ratio of 30 to 0,0000000000003998 , or as 75000000000000 to s nearly. And hence the planer Jupiter, revolving in a medium of the fame denfity with that fuperior air, would not lofe by the refiftance of the medium the ro00000th part of its motion in 1000000 years. In the fpaces near the Earth, the refiftance is prodaced only by the air, exhalations and vapours. When thefe are carefully exhaufted by the air pump from under the recciver, heavy bodies fall within the receiver with perfect freedom, and without the leaft fenfible refiftance; gold ittelf and the lîhteft down, let fall together, will defcend" with equal velocity; and though they fall through a fpace of four, fix, and eight feet, they will come to the bottom at the fame time; as appears from experiments. And therefore the celeftial regions being perfectly void of air and exhalations, the Planets and Comets meeting no fenfible refiftance in thofe

232 Mathematical Principles Book III. fpaces, will continue their motions through them for an immenfe tract of time.

Hypothesis I.

That the centre of the fyftem of the world is immoveable.

This is acknowledg'd by all, while fome contend that the Earth, others, that the Sun is fix'd in that centre. Let us fee what may from hence follow,

Proposition XI. Theorem XI.

That the common centre of gravity of the Earth, the Sun, and all the Planets is immoveable.

For (by cor. 4. of the laws) that centre either is at reft, or moves uniformly forward in a right line. But if that centre mov'd, the centre of the world would move alfo, againft the hypothefis.

Proposition XII. Theorem XII.

That the Sun is agitated by a perpetual motion, but never regedgsfar from the common centre of gravity of all the Planets.
For fince (by cor. 2. prop. 8.) the quantity of matter in the Sun, is to the quantity of matter in Jupiter, as 1067 to I : and the diftance of Jupiter from the Sun, is to the femidiameter of the Sun, in a proportion but a finall matter greater; the common centre of gravity of Jupiter and the Sun, will fall upon a point a little without the furface of the Sun. By the fame argumerit, fince the quantity of matter in the Sun is to the quantity of matter in Saturn, as 3021 to 1 ; and the

Book III. of Natural Philofophy: 233

the diftance of Saturn from the Sun is to the femidiameter of the Sun in a proportion but a fmall matter lefs; tolamente the common centre of gravity of Saturn and the Sun will fall upon a point a little within the furface of the Sun. And purfuing the principles of this computation, we fhould find that tho' the Earth and all the Planets

```
амnqu
``` were plac'd on one fide of the Sun, the diftance of the common centre of gravity of all from the centre of the Sun would fcarcely amount to one diameter of the Sun. In other cafes, the diftances of thofe centres is always lefs. And therefore, fince that centre of gravity is in perpetual reft, the Sun, according to the various pofitions of the Planets, muft perpetually be moved every cada way, but will'never recede far from that centre.

Cor. Hence the common centre of gravity of the Earth, the Sun, and all the Planets is to be efteem'd the Centre of the World. For fince the Earth, the Sun and all the Planets, mutually gravitate one towards another, and are therefore, according to their powers of gravity, in perpetual agitation, as the laws of motion require; it is plain that their moveable centres cannot be taken for the immoveable centre of the world. If that body were to be plac'd in the centre, towards which other bodies gravitate moft, (according to common opinion) that privilege ought to be allow'd to the Sun. But fince the Sun it felf is mov'd, a a fixt point is to be chofen, from which the centre of the Sun recedes leaff, and from which it would recede yet lefs, if the body of the Sun were denfer and greater, and therefore lefs apt to be mov'd.

\author{
Pro:
}

\section*{Proposition XIII. Theorem XIII.}

The Planets move in ellipfes which have their common focus in the centre of the Sun; and, by radij drawn to that centre, they defcribe areas proportional to the times of defcription.

We have difcours'd above of thefe motions from the phenomena. Now that we know the principles on which they depend, from thofe principles we deduce the motions of the heavens a priori. Becaufe the weights of the Planets towards the Sun, are reciprocally as the fquares of their diffances from the Sun's centre; if the Sun was at reft, and the other Planets did not mutually act one upon another, their orbits would be ellipfes, having the Sun in their common focus; and they would defcribe areas proportional to the times of defoription by prop. I \& 1 I. and cor. I. prop. 13. book I. But the mutual attions of the Planets one upon another, are fo very fmall, that they may be neglected. And by prop. 66. book I. they lefs difturb the motions of the \(\mathrm{Pl}_{2}-\) nets around the Sun in motion, than if thofe motions were perform'd about the Sun at reft.

It is true, that the action of Jupiter upon Saturn is not to be neglected. For the force of gravity towards Jupiter is to the force of gravity towards the Sun as I to 1067 ; and therefore in the conjunction of Jupiter and Saturn, becaufe the diftance of Saturn from Jupiter is to the diftance of Saturn from the Sun, almoft as 4 to 9 ; the gravity of Saturn towards Jupiter, will be to the gravity of Saturn towards the Sun, as 81 to \(16 \times 1067\); or, as 1 to about 211 . And hence arifes a perturbation of the orb of Saturn in every conjunction of this Planet with Jupiter, fo fenfible that aftrono-

\section*{Book III. of Natural Philofophy. 235}
mers are puzled with it. As the Planet is differently confundido fituated in thefe conjunctions, its excentricity is fometimes augmented, fometimes diminifh'd; its aphelion is fometimes carry'd forwards, fometimes backwards, and frampertod its mean motion is by turns accelerated and retarded. Yet the whole error in its motion about the Sun, 1 in umbargo tho' arifing from fo great a force, may be almoft avoided (except in the mean motion) by placing the lower to- mas bajo cus of its orbit in the common centre of gravity of Jupiter and the Sun, (according to prop. 67 . book 1.) and therefore that error when it is greateft, fcarcely ex-rcaramente ceeds two minutes. And the greateft error in the mean motion, fcarcely exceeds two minutes yearly. But ammalmenite in the conjunction of Jupiter and Saturn, the accelerative forces of gravity of the Sun towards Saturn, of Jupiter towards Saturn, and of Jupiter toward the Sun, are almoft as 16,81 and \(\frac{16 \times 81 \times 3021}{25}\) or 156609 ;and therefore the difference of the forces of gravity of the Sun towards Saturn, and of Jupiter towards Saturn, is to the force of gravity of Jupiter towards the Sun, as 6s to 156609 , or as 1 to 2409 . But the greateft power of Saturn to difturb the motion of Jupiter is proportional to this difference; and therefore the perturbation of the orbit of Jupiter is much lefs than that of Saturn's. The perturbations of the other orbitsare yet far lefs, except that the orbit of the Earth is fenfibly difturb'd by the Moon. The common centre of gravity of the Earth and Moon moves in an ellipfe about the Sun in the focus thereof, and by a radius drawn à lla to the Sun, defrribes areas proportional to the times of defcription. But the Earth in the mean time by a menftrual motion is revolv'd about this common centre.

\author{
Pro:
}

\section*{Proposition XIV. Theorem XIV.}

The aphelions and nodes of the orbits of the Plaj nets are fixt.

The aphelions are immoveable, by prop. in. book 1 : and fo are the planes of the orbits by prop. I. of the fame book. And if the planes are fixt, the nodes muft be fo too. It is true, that fome inequalities may arife from the mutual actions of the Planets and Comets in their revolutions. But thefe will be fo fmall that they may be here (pafs'd by. \(1=0 \mathrm{mitita}\)

Cor. i. The fixt Stars are immoveable, feeing they keep the fame pofition to the aphelions and nodes of the Planets.

Cor. 2. And fince thefe Stars are liable to no fenfrble parallax from the annual motion of the Earth, they can have no force, becaufe of their immenfe diftance, to produce any fenfible effect in our fyftem, Not to mention, that the fixt Stars, every where promifcuoufly difpers'd in the heavens, by their contrary attrations deftroy their mutual actions, by prop. \(70_{\text {, }}\) book I.

\section*{Scholivm.}

Since the Planets near the Sun (viz. Mercury, Ve: nus, the Earth and Mars) are fo fmall that they can at bur with little force upon each other; therefore their aphelions and nodes mult be fixt, exeepting in 10 far/as they are difturb'd by the actions of Jupiter and Satura, and other higher bodies. And hence we may find, by the theory of gravity, that their aphelions move a little in confcquentia, in refpect of the fixed Stars, and that in the iefquiplicate proportion of their feveral
feveral diftances from the Sun. So that if the aphelion of Mars, in the fpace of an hundred years, is carried \(33^{\prime} \cdot 20^{\prime \prime}\). in confequentia, in refpect of the fixed Stars ; the aphelions of the Earth, of Venus, and of Mercury, will, in an hundred years be carried forwards \(17^{\prime} \cdot 40^{\prime \prime \prime}\). \(10^{\prime} \cdot 53^{\prime \prime}\). and \(4^{\prime} \cdot 16^{\prime \prime}\). refpectively. But thefe motions are fo inconfiderable, that we have neglected them in this propofition.

\section*{Proposition XV. Theorem I.}

To find the principal diameters of the orbits of the Planets.

They are to be taken in the fubfefquiplicate proportion of the periodic times by prop. 15.bock 1 . and then to be feverally augmented in the proportion of the fum of the maffes of matter in the Sun and each Planet to the firft of two mean proportionals betwixt that fum and \(\qquad\) the quantity of matter in the Sun, by prop. 60. book I.

\section*{Proposition XVI. Problem II.}

To find the eccentricities and aphelions of the Planets.

This problem is refolved by prop. i8. book i.

> Proz

\section*{Proposition XVII. Theorem XV.}

The propofition is prov'd from the firf law of motion, and cor. 22. prop. 66. book 1. Jupiter, with refpect to the fixed Stars, revolves in \(9^{\text {h. }} 5 \sigma^{\prime}\). Mars in \(24^{\mathrm{h}}\). \(39^{\prime}\). Venus in about \(23^{\mathrm{h}}\). the Earth is \(23^{\mathrm{h}}\). 56'. the Sun in \(25 \frac{1}{2}\) days, and the Moon in 27 days 7 hours \(43^{\prime}\). Thefe things appear by the phrnomena. The foots in the Sun's body return to the fame fituation on the Sun's disk, with refpect to the Earth in 27 \(\frac{1}{2}\) days; and therefore with refpect to the fixed Stars the Sun revolves in about \(25 \frac{1}{2}\) days. But becaufe the lunar day, arifing from its uniform revolution about its axes is menftrual, that is, equal to the time of its periodic revolution in its orb, therefore the fame face of the Moon will be always nearly turned to the upper focus of its orb; but, as the fituation of that focus requires, will deviate a little, to one fide and to the other, from the Earth in the lower focus; and this is the libration in longitude. For the libration in latitude arifes from the Moon's latitude, and the inclination of its axis to the plane of the ecliptic. This theory of the libration of the Moon, Mr. N. Mercator in his aftronomy, publifhed at the beginning of the Year 1676 , explained more fully out of the letters I fent him. The utmoft fatellite of Saturn feems to revolve about its axis witha motion like this of the Moon, refpecting Saturn continually with the fame face. For in its revolution round Saturn, as often as it comes to the eaftern part of its orbit, it is farcely vifible, and generally quite difappears; which is like to beoccafioned

Book III. of Natural Pbilofophy. 239 by forme fpots in that part of its body, which is then mandia, turned toward the Earth, as M. Cafini has obferved. So alfo the utmoft fatellite of Jupiter feems to revolve demarleyane about its axis with a like motion, becaule in that part of its body which is turned from Jupiter, it has a pot, mancha which always appears as if it were in Jupiter's own bo- promis dy, whenever the fatellite paffes between Jupiter and our expe. onta
Proposition XVIII. Theorem XVI.
That the axes of the Planets are lefs than the mevores diameters drawn perpendicular to the axes.

The equal gravitation of the parts on all fides would give a spharical figure to the Planets, if ir.was not for their diurnal revolution in a circle. By that circular motion it comes to pals that the parts receding from retreuden the axe endeavour to afcend about the equator. And cifery, audese therefore if the matter is in a fluid flate, by its afcent towards the equator it will enlarge the diameters there, and by its defcent towards the poles it will horten the axe. So the diameter of Jupiter, (by the concurring obfervations of aftronomers) is found horter betwixt pole and pole, than from eaft to weft. And by the fame argument, if our Earth was not higher about the equator than at the poles, the Seas would fubfide about the poles, and rifing towards the equator, would lay all things there under water.

\section*{Proposition XIX. Problem III.}

To find the proportion of the axe of a Planet to the diameters perpendicular thereto. a

Our countryman Mr. Norwood, meafuring a diftance comprationts of 9057 SI feet of London meafuke between London and

York in 1635 , and obferving the difference of latitudes to be \(2^{\circ}\). \(28^{\prime}\), determined the meafure of one degree to be 367196 feet of London meafure, that is 57300 Paris toiles. M. Picart meafuring an arc of one degree, and \(22^{\prime} .55^{\prime \prime}\). of the meridian between Amiens and Malvoifine, found an arc of one degree to be \(\$ 7060\) Paris toifes. M. Cafini the father meafured the diftance upon the meridian from the town of Collioure in Roufillon to the obfervatory of Paris: And his fon added the diftance from the obfervatory to the "ciradel of Dunkirk. The whole diftance was \(4861 \varsigma \sigma \frac{\text { chacites, }}{2}\) toites, and the difference of the latitudes of Collioure and Dunkirk was 8 degrees, and \(31^{\prime}\). \(11 \frac{5_{6}^{\prime \prime}}{6}\). Hence an arc of one degree appears to be 57061 Paris toifes. And from thefe meafures we conclude, that the circumference of the Earth is 123249600 , and its femidiameter 19615800 Paris feet, upon the fuppofition that the Earth is of a fphxrical figure.

In the latitude of Paris a heavy body falling in a fecond of time, defcribes is Paris feet, I inch, 1 line as above, that is, 2173 lines \(\frac{7}{9}\). The weight of the body is diminifhed by the weight of the ambient air. Let us fuppofe the weight ligf thereby to be IT \(\frac{1}{2}\) part of the whole weight, "then that heavy body falling in vacuo will defcribe a height of 2174 lines in one fecond of time.
A body in every fidereal day of \(23^{\mathrm{h}} \cdot 56^{\prime} \cdot 4^{\prime \prime}\). uniformly revolving in a circle at the diftance of 19615800 feet from the centre, in one fecond of time defrcribes an arc of 1433,46 feet; the verfed fine of which is 0,05236561 feet, or 7,54064 lines. And therefore the force with which bodies defcend in the latitude of Paris is to the centrifugal force of bodies in the equator arifing from the diurnal motion of the Earth, as 2174 to 7,54064 .

The centrifugal force of bodies in the equator, is to the centrifugal force with which bodies recede directly from

\section*{Book III. of Natural Pbilofophy. 24 I} from the Earth in the latitude of Paris \(48^{\circ} .50^{\prime} .10^{\prime \prime}\). in the duplicate proportion of the radius to the cofine of the latitude, that is, as 7,54064 to 3,267 . Add this force to the force with which bodies defeend by their weight in the latitude of Paris, and a body, in the latitude of Paris, falling by its whole undiminifhed force of gravity, in the time of one fecond, will defcribe 2177,267 lines, or 15 Paris feet, 1 inch, and 5,267 lines. And the total force of gravity in that latitude will be to the centrifugal force of bodies in the equator of the Earth, as 2177,267 to 7,54064 . or as 289 to I .

Wherefore if \(A P B Q\) (Pl. io. Fig. 1.) reprefent the fi* gure of the Earth, now no longer fphxrical, but generated by the rotation of an ellipfis about its leffer axe; and ACOgca a canal full of water, reaching from the alcauraneis pole \(Q_{q}\) to the centre \(C c\), and thence.rifing to the chourboue equator \(A a\) : The weight of the water in the leg of pierma the canal \(A C c a\), will be to the weight of water in the other leg QCcq, as 289 to 288 , becaufe the centrifugal force, arifing from the circular motion, fuftains and (takes off) one of the 289 parts of the weight (in the one leg) and the weight of 288 in the other fuftains the reft. But by computation (from cor. 2 . prop. 91. book I.) I find, that if the matter of the Earth was all uniform, and without any motion, and its axe \(P Q\) were to the diameter \(A B\), as 100 to 101 ; the force of gravity in the place \(O\), towards the Earth, would be to the force of gravity in the fame place \(Q\) towards a fphere defcrib'd about the centre \(C\) with the radius \(P C\), or \(O C\), as 126 to \(12 \%\). And by the fame argument, the force of gravity in the place \(A\) towards the fphxroid, generated by the rotation of the elliple \(A P B Q\) about the axe \(A B\), is to the force of gravity in the fame place \(A\), towards the fphere defcrib'd about the centre \(C\) with the radius \(A C\), as 125 to 126. But the force of gravity in the place \(A\), Yoz. II.

R
\$0s
towards the Earth, is a mean proportional betwixt the forces of gravity towards that Iphroroid and this f there; because the sphere, by having its diameter \(P Q\) diminifhed, in the proportion of 101 to 100 , is transformed into the figure of the Earth; and this figure, by having a third diameter perpendicular to the two dimeters \(A B\) and \(P Q\) diminifh'd in the fame proportion, is converted into the fid fphxroid; and the force of gravity in \(A\), in either cafe, is diminifh'd nearly in the fame proportion. Therefore the force of gravity in \(A\), towards the Sphere defcrib'd about the centre \(C\), with the radius \(A C\), is to the force of gravity in \(A_{\text {s }}\) towards the Earth, as 126 to. \(125 \frac{3}{2}\). And the force of gravity in the place \(\Omega\), towards the fphere defcrib'd about the centre \(C\) with the radius \(O C\), is to the force of gravity in the place \(A\), towards the Sphere defcrib'd about the centre \(C\), with the radius \(A C\), in the proportion of the diameters, (by prop. 72. book 1.) that is, as 100 to 10 I . If therefore we compound thole three proportions 126 to 125,126 to \(125 \frac{1}{2}\), and 100 to 101 ; into one: The force of gravity in the place \(O\) towards the Earth, will be to the force of gravity in the place \(A\) towards the Earth, as \(126 \times 126 \times\) 100 to \(125 \times 125 \frac{1}{2} \times 101\); or as 501 to 500 .

Now fince (by cor. 3. prop. 91. book 1.) the force of gravity in either leg of the canal \(A C c a\), or \(O C \subset q\), is as the diftance of the places from the centre of the Earth, if thole legs are conceived to be divided by tranfverfe, parallel, and equidiftant furfaces, into parts proportional to the wholes, the weights of any numbber of parts in the one leg \(A C c a\), will be to the weights of the fame number of parts in the other leg, as their magnitudes and the accelerative forces of their gravity conjunctly, that is, as ri to 100 , and 500 to jor, or as 505 to 501 . And therefore if the centrifugal force of every part in the leg \(A C c a\), arifing from the diurnal motion, was to the weight of the fame part, as

\section*{Book III. of Natural Philofophy. 243}

4 to 505 , fo that from the weight of every part, conceived to be divided into sos parts, the centrifugal force might take off) four of thofe parts, the weightstertruye woula remain equal in each leg, and therefore the fluid would reft in an equilibrium. But the centrifugal force of every part is to the weight of the fame part as \(\mathbf{x}\) to 289; that is, the centrifugal force which fhould be \(\frac{4}{5.3}\) parts of the weight, is only \({ }_{T} \frac{1}{8, y}\) part thereof. And therefore, I fay, by the rule of proportrons, that if the centrifugal force \(\frac{4}{5} 5\) make the height of the water in the leg \(A C c a\) to exceed the height of the water in the leg \(Q C c q\), by one \(-\frac{1}{\circ}\) part of its whole height; the centrifugal force \(\frac{1}{8} \frac{1}{85}\) will make the excefs of the height in the leg ACca, only \(\frac{5}{3}\) ? part of the height of the water in the other leg OCcq. And therefore the diameter of the Earth at the equator, is to its diameter from pole to pole, as 230 to 229. And fince the mean femidiameter of the Earth, according to Picart's menfuration, is 19615800 Paris feet, or 3923,16 miles (reckoning 5000 feet calculaudr to a mile) the Earth will be higher at the equator, than at the poles, by 85472 feet, or \(17 \frac{1}{10}\) miles. And its height at the equator will be about 19658600 feet, and at the poles 19573000 feet.

If, the denfity and periodic time of the diurnal revolution remaining the fame, the Planet was greater or lefs than the Earth; the proportion of the centrifugal force to that of gravity, and therefore alfo of the diameter betwixt the poles to the diameter at the equator, would likewife remain the fame. But if the diurnal motion was accelerated or retarded in any proportion, the centrifugal force would be augmented or diminifhed nearly in the fame duplicate proportion; and therefore the difference of the diameters will be increafed or diminifhed in the fame duplicate ratio very nearly. And if the denfity of the Planet was augmented or diminifhed in any proportion, the force of R 2
gravity

\section*{244} gravity tending towards it would alfo be augmented or diminifhed in the fame proportion; and the difference of the diameters contrarywife would be diminifhed in proportion as the force of gravity is augmented, and augmented in proportion as the force of gravity is diminifhed. Wherefore, fince the Earth, in refpect of the fixt Stars, revolves in \(23^{\mathrm{h}}\). \(56^{\prime}\), but Jupiter in \(9^{\mathrm{h}} .56^{\prime}\), and the quares of their periodic times are as 29 to 5 , and their denfities as 400 to \(94 \frac{1}{2}\); the difference of the diameters of Jupiter will be to its leffer
\[
\frac{29}{5} \times \frac{400}{941} \frac{229}{2} \times 1 \text { to } 1 \text {, or as I to } 9 \frac{2}{3} \text { nearly. }
\]

Therefore the diameter of Jupiter from ealt to weft, is to its diameter from pole to pole nearly as \(10 \frac{2}{3}\) to \(9 \frac{1}{3}\). Therefore fince its greateft diameter is \(37^{\prime \prime}\), its leffer diameter lying between the poles, will be \(33^{\prime \prime}\) \(25^{\prime \prime \prime}\). Add thereto about \(3^{\prime \prime}\) for the irregular refraction of light, and the apparent diameters of this Planet will become \(40^{\prime \prime}\) and \(36^{\prime \prime} .25^{\prime \prime \prime}\) : which are to each other as \(11 \frac{1}{6}\) to \(10 \frac{1}{6}\) very nearly. Thefe things are fo upon the fuppofition, that the body of Jupiter is uniformly denfe. But now if its body be denfer towards the plane of the equator than towards the poles, its diameters may be to each other as 12 to 11 , or 13 to 12 , or perhaps as 14 to 13 .

And Cafini obferved in the year 1691, that the diameter of Jupiter reaching from eaft to weft, is greater by about a fifteenth part than the other diameter. Mr. Pound with his 123 foot telefcope, and an excellent micrometer, meafured the diameters of Jupiter in the year 1719, and found them as follows.

Book III. of Natural Pbilofophy:
\begin{tabular}{|c|c|c|c|c|c|}
\hline The times. & |Greateft diam. & Leffer diam. & \multicolumn{3}{|l|}{The diam. to each other.} \\
\hline day. hours. & parts. & parts. & & as & \\
\hline Fan. 286 & 13,40 & 12,28 & 12 & to & 11 \\
\hline Mar. 67 & 13,12 & 12,20 & 134 & to & \\
\hline Mar. 97 & 13,12 & 12,08 & \(12 \frac{2}{3}\) & to & \\
\hline Apr. 99 & 12,32 & 11,48 & \(14 \frac{1}{2}\) & to & 13 \\
\hline
\end{tabular}

So that the theory agrees with the phxnomena. For the Planets are more heated by the Sun's rays to- caluth if -, wards their equators, and therefore are a little thore condenfed by that heat, than towards their poles.

Moreover, that there is a diminution of gravity oc-ademes cafioned by the diurnal rotation of the Earth, and therefore the Earth rifes higher there than it does at the poles, (fuppofing that its matter is uniformly denfe) will appear by the experiments of pendulums related under the following propofition.

\section*{Proposition XX. Problem IV.}

To find and compare together the weights of bodies in the different regions of our Earth.
orgue Becaufe the weights of the unequal legs of the canal rama of water \(A C Q q \subset a\), are equal ; and the weights of the parts proportional to the whole legs, and alike fituated igne..... in them, are one to another as the weights of the wholes, and therefore equal betwixt themfelves; the weights of equal parts and alike fituated in the legs, will be reciprocally as the legs, that is, reciprocally as 230 to 229 . And the cafe is the fame in all homogeneous equal bodies alike fituated in the legs of the canal. Their weights are reciprocally as the legs, that R 3

\section*{246} Mathematical Principles Book III.
is, reciprocally as the diftances of the bodies from the centre of the Earth. Therefore if the bodies are fituated in the uppermoft parts of the canals, or on the furface of the Earth, their weights will be, one to anorher, reciprocally as their diftances from the centre. And by the fame argument, the weights in all other places round the whole furface of the Earth, are reciprocally as the diftances of the places from the centre; and therefore, in the hypothefis of the Earth's being a fphæroid, are given in proportion.
Whence arifes this theorem, that the increafe of weight, in paffing from the equator to the poles, is nearly as the verled fine of double the latitude, or, which comes to the fame thing, as the fquare of the right fine of the latitude. And the arcs of the degrees of latitude in the meridian, increafe nearly in the fame proportion. And therefore, fince the latitude of Paris is \(4^{\circ}\). \(50^{\circ}\), that of places under the equator, \(00^{\circ} .00^{\prime}\). and that of places under the poles \(90^{\circ}\); and the verfed fines of double thofe arcs are 1 1334,00000 and 20000, the radius being \(10>00\); and the force of gravity at the pole is to the force of gravity at the equator, as 230 to 229 , and the excefs of the force of gravity at the pole, to the force of gravity at the equator, as 1 to 229, the excefs of the force of gravity in the latitude of Paris, will be to the force of gravity at the equator as \(\mathrm{I} \times \frac{11}{2} \frac{13}{0} \frac{3}{6} \frac{4}{0}\) to 229 , or as \(; 667\) to 2290000 . And therefore the whole forces of gravity in thofe places will be, one to the other, as 2295667 to 2290000. Wherefore, fince the lengths of pendulums vibrating in equal times, are as the forces of gravity, and in the latitude of Paris, the length of a pendulum vibrating feconds, is 3 Paris feet, and \(8 \frac{1}{2}\) lines, or rather, becaufe of the weight of the air \(8 \frac{5}{9}\) lines; the length of a pendulum vibrating in the fame time under the equator, will be thorter by 1,087 lines. find by a like calculus the following table is made.

Latitude

Book III. of Natural Pbilofophy: 247
\begin{tabular}{|c|c|c|}
\hline Latitude of the place. & Length of the pendulum. & Meafure of one degree in the meridian. \\
\hline Deg. & Feet. Lines. & Toifes. \\
\hline \(\bigcirc\) & 3 - 7,468 & 56637 \\
\hline 5 & \(3 \cdot 7,482\) & 56642 \\
\hline 10 & \(3 \cdot 7,526\) & 56659 \\
\hline 15 & \(3 \cdot 7,596\) & 56687 \\
\hline 20 & \(3 \cdot 7,692\) & 56724 \\
\hline 25 & \(3 \cdot 7,812\) & 56769 \\
\hline 30 & \(3 \cdot 7,948\) & 56823 \\
\hline 35 & \(3 \cdot 8,099\) & 56882 \\
\hline 40 & \(3 \cdot 8,261\) & 56945 \\
\hline 1 & 3 - 8,294 & 56958 \\
\hline 2 & \(3 \cdot 8,327\) & 56971 \\
\hline 3 & 3 - 8,361 & 56984 \\
\hline 4 & 3 - 8,394 & 56997 \\
\hline 45 & 3 . 8,428 & 57010 \\
\hline 6 & 3, 8,461 & 57022 \\
\hline 7 & 3 - 8,494 & 57035 \\
\hline 8 & 3 - 8,528 & 57048 \\
\hline 9 & 3 - 8,561 & 57061 \\
\hline 50 & 3 - 8,594 & 57074 \\
\hline 55 & 3. 8,756 & 57137 \\
\hline 60 & \(3 \cdot 8,907\) & 57196 \\
\hline 65 & 3 - 9,044 & 57250 \\
\hline 70 & \(3 \cdot 9,162\) & 57295 \\
\hline 75 & 3-9,258 & 57332 \\
\hline 80 & \(3 \cdot 9,329\) & 57360 \\
\hline 85 & \(3 \cdot 9,372\) & 57377 \\
\hline 90 & \(3 \cdot 9,387\) & 57382 \\
\hline
\end{tabular}

By this table therefore it appears, that the inequality of degrees is fo fmall, that the figure of the Earth, in R 4
geogra-

\section*{248} Mathematical Principles Book III. geographical matters, may be confidered as fpharical; especially if the Earth be a little denfer towards the plane of the equator than towards the poles.

Now feveral aftronomers fent into remote countries to make aftronomical observations, have found that mas lester? pendulum clocks do accordingly move flower near the equator than in in our climates. And firft of ali the year 1672, M. Richer took notice of it in the inland of Cayenne. For when, in the month of Auguft, he il was observing the tranfits of the fixt Stars over the meridian, he found his clock to go flower than it ought in respect of the mean motion of the Sun, at the rate of \(2^{\prime}\). \(28^{\prime \prime}\). a day. Therefore(fitting up/a fimple pendulum to vibrate in feconds, which were meafured by an excellent clock, he observed the length of that dimple pendulum; and this he did over and over/every week for ten months together. And upon his return to "France, comparing the length of that pendulum, with the length of the pendulum at Paris, (which was 3 Paris feet and \(8 \frac{3}{5}\) lines) he found it shorter by \(1 \frac{1}{4}\) line.
durius Afterwards our friend Dr. Halley, about the year 1677, arriving at the \({ }^{9}\) inland of St. Helen, found his pendulum-clock to go flower there than at London, without marking the difference. But he fhoryned the rod of his clock, by more than the \(\frac{1}{8}\) of an in inch, or \(\pm \frac{1}{2}\) line. And to effect this, because the length of the frees, at the lower end 'of the rod was not fuffici-
lug g. ont, he interpofed a wooden ring betwixt the nut and the ball.-6.te

Then in the year 1682. M. Varin and M. des Hayes, found the length of a fimple pendulum vibrating in feconds at the royal observatory of Paris to be 3 feet and \(8 \frac{g}{g}\) lines. And by the fame method in the inland of Wore, they found the length of an ifochronal pendulam to be 3 feet and \(6 \frac{2}{9}\) lines, differing from the formar by two lines. And in the fame year, going to the iflands

Book III. of Natural Philofophy.
iflands of Guadaloupe and Martinico, they found that the length of an ifochronal pendulum in thofe iflands was 3 teet and \(6 \frac{1}{2}\) lines.

After this M. Couplet, the fon, in the month of \(7 u\) ly 1697 , at the royal obfervatory of Paris, fo fitted his pendulum clock to the mean motion of the Sun, that for a confiderable time together, the clock agreed with de contimno the motion of the Sun. In November following, up=a on his arrival at Lisbon, he found his clock to go Nlower than before, at the rate of \(2^{\prime}\). \(13^{\prime \prime}\). in 24 hours. And,next, March coming to Paraiba he found his clock fleganere to go. llower there than at Paris, and at the rate of \(4^{\prime}\). \(12^{\circ}\). in 24 hours. And he affirms, that the pendulum vibrating in feconds was fhorter at Lisbon by \(2 \frac{3}{2}\) lines, and at Paraiba by \(3 \frac{2}{3}\) lines, than at Paris. He had done better to have reckon'd thofe differences \(1 \frac{1}{3}\) and \(2 \frac{g}{9}\). For thefe differences correfpond to the differences of the times \(2^{\prime} .13^{\prime \prime}\). and \(4^{\prime}\). \(12^{\prime \prime}\). But this gentleman's obfervations are fo grofs, that we cannot confide in them.

In the following years 1699 and 1700 . M. des Hayes, making another voyage to America, determin'd that in the inlands of Cayenne and Granada the length of the pendulum vibrating in feconds was a fmall matter lefs than 3 feet and \(6 \frac{1}{2}\) lines; that in the ifland of St. Chrifophers, it was 3 feet and \(6 \frac{1}{4}\) lines; and in the inland of St. Domingo, 3 feet and 7 lines.

And in the year 1704. P. Feuille' at Puerto bello in America, found that the length of the pendulum vibrating in feconds, was 3 Paris feer, and only \(5 \frac{7}{12}\) lines, that is, almoft 3 lines morter than at Paris; but the obfervation was faulty. For afterwards going to the inland of Martinice, he found the tength of the ifochronal pendulum there, 3 Paris feet and \(\frac{1}{1} \frac{1}{2}\) ㅇines.

Now the latitude of Paraiba is \(\sigma^{\circ} .38^{\prime}\). Youth. That of Puerto bello \(9^{\circ} \cdot 33^{\prime} \cdot\) north. And the latitudes of the inlands Cayenne, Goree, Guadaloupe, Martinico, Granada,

St. Chriftophers and St. Domingo, are refpectively \(4^{\circ}\). \(55^{\prime}, 14^{\circ}, 40^{\prime \prime}, 14^{\circ} .00^{\prime}, 14^{\circ} .44^{\prime}, 12^{\circ}\). \(06^{\prime}, 17^{\circ} \cdot 19^{\prime \prime}\) and \(19^{\circ} .48^{\prime}\), north. And the exceffes of the length of the pendulum at Paris above the lengths of the ifochronal pendulums obferv'd in thofe latitudes, are a little greater than by the table of the lengths of the pendulum above computed. And therefore the Earth is a little higher under the equator than by the preceding calculus, and a little denfer at the centre than in mines near the furface, unlefs perhaps the heats of the torrid zone have a little extended the length of the pendulums.

For M. Picart has obferv'd, that a rod of iron, which in frofty weather in the winter feafon was one foot long, when heated by fire, was lengthen'd into I foot and \(\frac{1}{4}\) line. Afterwards M. de la Hire found that a rod of iron, which in the like winter feafon was \(\sigma\) feet long; when expos'd to the heat of the fummer Sun, was extended into 6 feet and \(\frac{2}{3}\) line. In the former cafe the heat was greater than in the latter. But in the latter it was greater than the heat of the external parts of an human body. For metals expos'd to the fum-mer-fun, acquire a very confiderable degree of heat. But the rod of a pendulum-clock is never expos'd to the heat of the fummer-fun, nor ever acquires a heat equal to that of the external parts of an human body. And therefore though the 3 foor rod of a pendulum alock will indeed be a little longer in the fummer than in the winter-feaaon; yet the difference will fcarcely amount to \(\frac{1}{4}\) line. Therefore the total difference of the lengths of ifochronal pendulums in different climates, cannot be afcrib'd to the difference of heat. Nor indeed to the miftakes of the French aftronomers. For although there is not a perfect agreemept betwixt their obfervations, yet the errors are fo fmall that they may be neglected; and in this they all agree, that ifochronal pendulums are fhorter under the equator than at the royal obfervatory of Paris, by a difference not

Book III. of Natural Philofophy.
lefs than \(1 \frac{1}{4}\) line, nor greater than \(2 \frac{2}{3}\) lines. By the obfervations of M. Richer in the inland of Cayenne, the difference was \(1 \frac{1}{4}\) line. That difference being corretted by thofe of M. des Hayes becomes \(1 \frac{2}{2}\) line or \(1 \frac{2}{4}\) line. By the lefs accurate obfervations of others the fame was made about two lines. And this difagreement might arife partly from the errors of the obfervations, partly from the diffimilitude of the internal parts of the Earth, and the height of mountains, partly from the different heats of the air.

I take an iron rod of 3 feet long to be fhorter by a fixth part of one line in winter time with us here in England, than in the fummer. Becaufe of the great heats under the equator, fubduct this quantity from the difference of one line and a quarter obferv'd by \(\mathbf{M}\). Richer, and there will remain one line \(\frac{1}{2}\), which agrees very well with \(1 \frac{87}{9}\) line collected by the theory a little before. M. Richer repeated his obfervations, made in the ifland of Cayenne, every week for 10 months to-muses gether, and compared the lengths of the pendulum which he had there noted in the iron rods, with the lengths thereof which he obferv'd in France. This diligence and care feems to have been wanting to the other obfervers. If/this gentleman's' óstervations are to be depended on, the Earth is higher under the equator than at the poles, and that by an excefs of about 17 miles: as appeared above by the theory.

\author{
Prop.
}

\section*{Proposition XXI. Theorem XVII.} That the equinuctial points go backwards, and that the axe of the Earth, by a nutation in every annual revolution, twice vibrates tocuards the ecliptic, and as often returns to its former pofition. otrantanta vees
The propofition appears from cor. 20. prop. 66. book 1. But that motion of nutation muft be very fmall, and indeed farce perceptible.

\section*{Proposition XXII. Theorem XVIII.}

That all the motions of the Moon, and all the inequalities of thole motions, follow from the principles which we have laid down:abajo

That the greater Planets, while they are carried about the Sun may, in the mean time, carry other leffer Planets, revolving about them; and that thofe leffer planets muft move in ellipfes, which have their foci in the centres of the greater, appears from prop. 65 . book 1. But then their motions will be feveral ways difturb'd by the action of the Sun, and they will fuffer fuch inequalities as are obferv'd in our Moon. Thus our Moon, (by cor. 2, 3, 4, and 5. prop. 66. book 1.) moves fafter, and, by a radius drawn to the Earth, defcribes an area, greater for the time, and has its orbit lefs curv'd, and therefore approaches nearer to the Earth, in the fyzygies than in the quadratures, excepting in (fo far as thefe effects are hinder'd by the motion of eccentricity. For (by cor. 9 . prop. 66 . book r.)

\section*{Book III. of Natural Pbilofophy.}
the eccentricity is greateft, when the apogeon of the Moon is in the fyzygies, and leaft when the fame is in the quadratures; and upon this account, the perigeon Moon is fwifter, and nearer to us, but the apo-mas vetar geon Moon flower and farther from us, in the ryzygies than in the quadratures. \({ }^{* 1}\) Moreover the apogee artesual goes forwards, and the nodes backwards: and this is hacia atras done, not with a regular, but an unequal motion. For (by cor. 7 and 8. prop. 66, book I.) the apogee goes more fwiftly forwards in its fyzygies, more flowly rapidament backwards in its quadratures; and, by the excefs of its progrefs above its regrefs, advances yearly in confec anmalmunts quentia. But contrarywife)the nodes (by cor. II. prop.al iontrario 66. book 1.) are quiefcent in their fyzygies, and go quitm fafteft back in their quadratures. Further, the greateft to men rapuid latitude of the Moon, (by cor. io. prop. 66. book I.) is greater in the quadratures of the Moon, than in its fyzygies. And (by cor. 6. prop. 66. book 1.) the mean motion of the Moon is flower in the perihelion of the Earth, than in its aphelion. And thefe are the principal inequalities (of the Moon) taken notice of by. aftronomers.

But there are yet other inequalities, not oblerv'd by former aftronomers; by which the motions of the Moon are fo difturb'd, that to this day we have nor been able to bring them under any certain rule. For Caman the velocities or horary motions of the apogee and nodes of the Moon, and their equations as well as the difference betwixt the greateft eccentricity in the fyzygies, and the leaft eccentricity in the quadratures, and that inequality, which we call the variation, are (by cor. 14. prop. 66. book 1.) in the courfe of the year, augmented and diminifh'd, in the triplicate proportion of the Sun's apparent diameter. And beGides (by cor. I and 2. lem. 10. and cor. 16. prop. 66. book I.) the variation is augmented and diminifh'd, nearly in the duplicate proportion of the time between
the quadratures. But in aftronomical calculations, this inequality is commonly thhrown into, and confounded with, the equation of the Moon's centre.

\section*{Proposition XXIII. Problem V.}
Huducir To derive the unequal motions of the fatellites
of łupiter and Saturn from the motions of
our Moon.

From the motions of our Moon we deduce the correfponding motions of the moons or fatellites of Ju• piter, in this manner, by cor. 16 . prop. 66. book 1 . The mean motion of the nodes of the outmoft fatellite of Jupiter, is to the mean motion of the nodes of our Moon, in a proportion compounded of the duplicate proportion of the periodic time of the Earth about the Sun, to the periodic time of Jupiter about the Sun, and the fimple proportion of the periodic time of the fatellite about Jupiter to the periodic time of our Moon about the Earth: and therefore thofe nodes, in the fpace of an hundred years, are carried \(8^{\circ} .24^{\prime}\). backwards, or in antecedentia. The mean motions of the nodes of the inner fatellites, are to the mean motion of the nodes of the outmoft, as their periodic times to the periodic time of the former, by the fame corollary, and are thence given. And the motion of the apfis of every fatellite in confequentia, is to the motion of its nodes in antecedentia, as the motion of the apogee of our Moon, to the motion of its nodes (by the fame corollary) and is thence given. But the motions of the apfides thus found, mult be diminifh'd in the proportion of \(s\) to 9 , or of about 1 to 2 , on account of a caufe, which I cannot here defcend to explain. The greateft equations of the nodes, and of the apfis of every fatellite, are to the greateft equations of the nodes,

Book III. of Natural Pbilofophy. 25s and apogee of our Moon refpectively, as the motions of the nodes and apfides of the fatellites, in the time of one revolution of the former equations, to the motions of the nodes and apogee of our Moon, in the time of one revolution of the latter equations. The variation of a fatellite, feen from Jupiter, is to the variation of our Moon, in the fame proportion, as the whole motions of their nodes refpectively, during the times, in which the fatellite and our Moon, (after parting tujum be from) are revolv'd (again) to the Sun, by the fame corollary; and therefore in the outmoft fatellite, the variation does not exceed \(\varsigma^{\prime \prime} .12^{\prime \prime \prime \prime}\) 。

\section*{Proposition XXIV. Theorem XIX.}

That the flux and reflux of the Sea, arife from the actions of the Sun and Moon.

By cor. 19 and 20 . prop. 66 . book 1. It appears that the waters of the fea ought twice to rife and twice to fall every day, as welflunar as folar; and that the greateft height of the waters in the open and deep feas, \(a\) ltol ought to follow the appulfe of the Iuminaries to the meridian of the place, by a lefs interval than \(\sigma\) hours; as happens in all that eaftern tract of the Atlantic and efithiopic feas between France and the Cape of Good Hope; and on the cogfts of Cbili and Peru in the South-Sea; in all which hhoars the flood falls out about the fecond, third, or fourth hour, unlefs where the motion propagated from the deep otean is by the fhallownefs of the channels, through which it paffes to fome particular places, retarded to the fifth, fixth, or feventh hour, and even later, The hours I reckon from the appulfe of each llummary to the meridian of the place, as well under, as above the horizon; and by the hours of the lunar day, I underftand the 24th parts of that time, which the Moon, by its apparent diurnal motion, em-
tit var rowivo fevatanis
ploys to come about again to the meridian of the place which it left the day before. The force of the Sun or Moon in railing the lea, is greater in the appulse of the luminary to the meridian of the place. But the force impreffed upon the fa at that time continues a
dis) 1 usu tran guile. Libel taller iota
whir
causer ebb. In the quadratures the Sun will [rife the waters which the Moon depreffes, and deprefs the waters which the Moon raises, and from the difference of their forces, the fmalleft of all tides will follow. And because (as experience tells us) the force of the Moon is greater than that of the Sun, the greateft height of the waters will happen about the third lunar hour. Out of the syzygies and quadratures, the greateft tide, which by the fingle force of the Moon ought to fall out at the third lunar hour, and by the fingle force of the Sun at the third folar hour, by the compounded forces of both muff fall our in an intermediate time, that apbroaches nearer to the third hour of the Moon, than to that of the Sun. And therefore while the Moon is palfing from the fyzygies to the quadratures, during which time the 3 d hour of the Sun precedes the 3 d hour of the Moon, the greateft height of the waters will alfo precede the 3 d hour of the Moon; and that, by the greateft interval, a little after the octants of the Moon;

\section*{Book III. of Natural Pbilofophy.} 257
Moon; and by like intervals, the greateft tide will fol-maver low the 3 d lunar hour, while the Moon is paffing from the quadratures to the fyzygies. Thus it happens in the open fea. For in the mouths of rivers, the greater tides come later to their height. entrad.

But the effects of the luminaries depend upon their diftances from the Earth. For when they are lefs diftant, their effecis are greater, and when more diftant, their effects are lef, and that in the triplicate proportion of their apparent diameter. Therefore it is, that the Sun, itr the winter time, being then in its perigee, has a greater effect, and makes the tides in the fyzygies maver fomething greater, and thofe in the quadratures fomething lefs than in the fummer feafon; and every month the Moon, while in the perigee, raifes greater tides than at the diftance of is days before or after, when it is in its apogee. Whence it comes to pafs, that two hight \(A_{t}\) tides don't follow, one the other, in two immediately fucceeding fyzygies.

The effect of either luminary doth likewife depend upon its declination or diftance from the equator. For, if the luminary was plac'd at the pole, it would conftantly attract all the parts of the waters, without any intenfion or remifion of its action, and could caufe no reciprocation of motion. And therefore, as the lumi-
naries decline from the equator towards either pole, they will, by degrees, lofe their force, and on this account will excite leffer tides in the folftitial than in the equinoctial fyzygies. But in the folftitial quadratures, they will raife greater tides than in the quadratures about the equinoxes; becaufe the force of the Moon then fituated in the equator, moft exceeds the force of the Sun. Therefore the greareft tides fall out in thofe fyzygies, and the leaft in thofe quadratures, which happen about the time of both equinoxes: and the greateft tide in the fyzygies is always fucceeded by the leaft tide in the quadratures, as we find by experience.

Vol. II. \(\underline{\text { S But, }}\)

But, becaufe the Sun is lefs diftant from the Earth in winter than in fummer, it comes to pafs that the greateft and leaft tides more frequently appear before than after the vernal equinox, and more frequently after than before the autumnal.

Moreover, the effects of the luminaries depend upon the latitudes of places. Let APEP Pl.io. Fig. 2. reprefent the Earth cover'd with deep waters; \(C\) its centre; \(P, p\) its poles; \(A E\) the equator ; \(F\), any place without the equator; \(F f\), the parallel of the place; \(D d\) the correfpondent parallel on the other fide of the equator ; \(L\), the place of the Moon three hours before; \(H\), the place of the Earth directly under it ; \(h\), the oppofite place; \(K\), \(k\) the places at 90 degrees diftance; \(C H, C b\), the greateft heights of the fea from the centre of the Earth; and \(C K, c k\) its leaft heights: and if with the axes \(H h, K k\), an ellipfis is defrrib'd, and by the revolution of that ellipfisabout its longer axe \(H h\), a fpharoid \(H P\) Khpk, is form'd, this fpharoid will nearly reprefent the figure of the fea; and \(C F, C f, C D, C d\), will reprefent the heights of the fea in the places \(F f, D d\). But further, in the faid revolution of the ehipfis any point \(N\) defrribes the circle \(N M\), cutting the parallels \(F f\), \(D d\), in any places \(R T\); and the equator \(A E\) in \(S ; C N\) will reprefent the height of the fea in all thofe places \(R\), \(S, T\), fituated in this circle. Wherefore in the diurnal revolution of any place \(F\), the greateft flood will be in \(F\), at the 3 d hour after the appulfe of the Moon to the meridian above the Horizon ; and afterwards the greateft elbb in \(O\), at the 3 d hour after the fetting of the Moon: and then the greateft flood in \(f\), at the 3 d hour after the appulfe of the Moon to the meridian under the horizon, and laftly, the greateft ebb in \(O\), at the 2d hour after the rifing of the Moon; and the later flood in \(f\), will be leff than the preceding flood in \(F\). For the whole fea is divided into two hemifpherical floods, one in the hemifphere \(K H k\) on the north fide,
the other in the oppofite hemifphere \(K b k\) which we may therefore call the nopthigrn and the fouthern floods. nevidimal Thefe floods being always oppofite the one to the other, come by turns to the meridians of all places; after an interval of 12 lunar hours. And feeing the northern countries partake more of the northern flood, and the fouthern countries more of the fouthern flood, thence arife tides,"alferinately greater and lefs in all places without the equator, in which the luminaries rife and fer. But the greateft tide will happen, when the Moon declines towards the vertex of the place, about the 3 d hour after the appulte of the Moon to the meridian above the horizon; and when the Moon changes its declination to the otber fide of the equator, that which was the greater tide will ba chang'd into a leffer. And the greateft difference of the floods will fall out about the times of the folftices; efpecially if the afcending node of the Moon is about the firt of Aries. So it is found by experience, that the morning tides in winter exceed thofe of the evening, and the evening tides in fummer exceed thofe of the morning ; at Plymoutb by. the height of one foot, but at Brifolo, by the height of 15 inches, according to the obfervations of Colpprefs and Sturmy.
But the motions which we have been defrribing; fuffer fome alteration from that force of reciprocation; which the waters, being once moved, retain a lietle while by their vis infita. Whence it comes's to "pärs that the tides may continue for fome time, tho' the aetions of the luminaries fhould ceafe: This power of retaining the impref'd motion leffens the difference of the alternate tides and makes thofe tides which immediarely fucceed after the fyzygies greater; and thofe which followiv next after the quadratures, lefs: And hence it is, that the alternate tides at Plymiouth and Brifol, don't differ much more one from the other than by the height of a foot or is inches, and that the greateft tides of all at
thofe ports are not the firft but the third after the fyzygies. And befides at the motions are retarded in their paflage through hallow channels, fo that the greateft tides of all in fome ftreights and mouths of rivers, are the fourth or even the fifth after the fyzygies.

Farther it may happens that the tide may be propagated from the ocean through different channels towards the fame port, and may past quicker through fome channels than through others, in which cafe the fame tide, divided into two or more fucceeding one another, may compound new motions of different kinds. Let us fuppofe two equal tides flowing towards the fame port from different places, the one preceding the other by 6 hours; and fuppofe the firft tide to happen at the third hour of the appulfe of the Moon to the meridian of the port. If the Moon at the time of the appulfe to the meridian was in the equator, every 6 hours alternately there would arife equal floods, which meeting with as many equal ebbs would fo ballance one the other, that for that day the water would ftagnate and remain quiet. If the Moon then declined from the equator, the tides' in the ocean would be alternately greater and lefs as was faid. And from thence two greater and two leffer tides would bealternatelly propagated towards that port. But the two greater floods would make the greateft height of the waters to fall out in the middle time betwixt both; and the greater and leffer floods would make the waters to rife to a mean height in the middle time between them, and in the middle time between the two leffer floods the waters would rife to their leaft height. Thus in the fpace of 24 hours the waters would come, not twice, as commonly, but once only to their greateft, and once only to their leaft height; and their greateft height, if the Moon declined towards the elevated pole, would happen at the \(\sigma\) or 30 th hour after the appulfe of the Moon to the meridian; and when the Moon changed its declination this flood would

\section*{Book III. of Natural PhiloSophy. 261}
would be changed into an ebb. An example of all baja mar which Dr. Halley has given us, from the obfervations of feamern, in the port of Bat ham in the kingdom of Tunquin in the latitude of \(20^{\circ} .50^{\prime}\). north. In that port, on the day which follows after the paffage of the Moon over the equator, the waters flagnate: when the Moon declines to the north they begin to flow and ebb, not twice, as in other ports, bat once only every day, and the flask happens at the retting, and the greateft ebb at the riffing of the Moon. This tide encreafes with the decoration of the Moon till the \(7^{\text {th }}\) or 8th day;
\[
\begin{aligned}
& \text { seato } \\
& \text { orto-pulida } \\
& \text { hast- }
\end{aligned}
\] then for the 7 or 8 days following, it decreafes at the fame rate as it had increased before, and ceases when the Moon changes its declination, croffing over the e- Wwround. quator to the louth. After which the flood is immediatly chang'd into an ebb; and thenceforth the ebb happens at the retting, and the flood at the riling of the Moon; till the Moon again puffing the equator changes its declination. There are two inlets to this port, hera do end ala and the neighbouring channels, one from the feas of China, bet ween the continent and the inland of Luconia, the other from the Indian fa, between the continent and the inland of Borneo. But whether there be really two tides propagated through the fid channels, one from the Indian fa in the face of 12 hours, and one from the fa of China in the face of 6 hours, which therefore happening at the 3 d and 9 th lunar hours, by being compounded together, produce thole motions, or whether there be any other circumftances in the fate of affacio thole fees, I leave to be determin'd by obfervations on the neighbouring fhoars.?

Thus I have explained the causes of the motions of the Moon and of the Sea. Now it is fit to fubjoin Something concerning the quantity of thofe motions.

\author{
Pro:
}

\section*{Proposition XXV. Problem VI.} To find the forces with which the Sun difturbs the motions of the Moon. Pl. 10. Fig. 3.

Let \(S\) reprefent the Sun, \(T\) the Earth, \(P\) the Moon, \(C A D B\) the Moon's orbit. In \(S P\) take \(S K\) equal to \(S T\); and let \(S L\) be to \(S K\), in the duplicat \({ }^{\prime \prime \prime}\) proportion of \(S K\) to \(S P\); draw \(L M\) parallell to \(P T\); and if \(S T\) or \(S K\) is fuppos'd to reprefent the accelerated force of gravity of the Earth towards the Sun, \(S L\) will reprefent the accelerative force of gravity of the Moon towards the Sun. But that force is compounded of the parts \(S M\) and \(L M\), of which the force \(L M\), and that part of \(S M\) which is reprefented by \(T M\), difturb the motion of the Moon, as we have fhew'd in prop. 66. book i. and its corollaries. Forafmuch as the Earth and Moon are revolv'd about their common centre of gravity, the motion of the Earth about that centre will be alfo difturb'd by the like forces, but we may confider the fums both of the forces and of the motions as in the Moon, and reprefent the fum of the forces by the lines \(T M\) and \(M L\), which are analogous to them both. The force \(M L\) (in its mean quantity) is, to the centripetal force by which the Moon may be retain'd in its orbit revolving about the Earth at reft at the diftance \(P T\), in the duplicate proportion of the periodic time of the Moon about the Earth, to the periodic time of the Earth about the Sun (by cor. 17 . prop. 66. book 1.) that is in the duplicate proportion of \(27^{\mathrm{d}}\). \(7^{\mathrm{h}}\) : ' \(43^{\prime}\) ' to \(365^{\text {d. }} 6^{\text {h. }} 9^{\prime}\) '; or as 1000 to 178725 ; or as 1 to \(178 \frac{3}{4}\). But in the \(4^{\text {th }}\) prop. of this book we found, that if both Earth and Moon were revolv'd about their common centre of gravity, the mean diftance of the one from the other would be nearly \(60 \frac{1}{2}\) mean femidiameters of the Earth. And

Book III. of Natural Pbilofophy. \(2 \mathrm{O}_{3}\) the force, by which the Moon may be kept revolving manturide in its orbit about the Earth in reft at the diftance \(P T\) of \(60 \frac{1}{2}\) femidiameters of the Earth, is to the force by which it may be revolv'd in the fame time at the diftance of 60 femidiamerers, as \(60 \frac{1}{2}\) to 60 ; and this force is to the force of gravity with us, very nearly as con rupucto a I to \(\sigma 0 \times 60\). Therefore the mean force \(M L\) is to the force of gravity on the furface of our Earth, as \(1 \times 60 \frac{1}{2}\) to \(60 \times 60 \times 60 \times 178 \frac{2}{2}\), or as 1 to \(\sigma_{3} 8092\), 6 . whence by the proportion of the lines \(T M, M L\), the force \(T M\) is alfo given; and thefe are the forces with which the Sun difturbs the motions of the Moon. QE.I.

\section*{Proposition XXVI. Problem VII.}

To find the borary increment of the area, which the Moon, by a radius drawn to the Earth, defcribes in a circular orbit.

We have above fhew'd that the area, which the Moon defcribes by a radius drawn to the Earth, is proportional to the time of defcription ; excepting in fo faras the Moon's motion is difturb'd by the action of the Sun. And here we propofe to inveftigate the inequality of the moment, or horary increment of that area, or motion fo difturb'd. To render the calculus more eafy, we fhall fuppofe the orbit of the Moon to be circular, and neglect all inequalities, but that only which is now under confideration. And becaufe of the immenfediftance of the Sun, we fhall further fuppofe, that the lines \(S P\) and \(S T\), are parallel. By this means, the force \(L M P 1\). ro. Fig. 4. will be always reduc'd to its mean quantity \(T P\), as well as the force \(T M\), to its mean quantity \({ }_{3} P K\). There forces, (by cor. 2. of the laws of motion) compofe the force \(T L\); and this force by letting fall the \(\mathrm{S}_{4}\) perpen-

\section*{264 Mathematical Principles Book III.} perpendicular \(L E\) upon the radius \(T P\), is refolv'd into
rilnguna the forces \(T E, E L\); of which the force \(T E\), acting conftantly in the direction of the radius \(T P\), neither accelerates or retards the defcription of the area \(T P C\), made by that radius \(T P\); but \(E L\) acting on the radius \(T P\) in a perpendicular direction, accelerates or retards the defcription of the area in proportion as it accelerates or retards the Moon. That acceleration of the Moon, in its paffage from the quadrature \(C\), to the conjunction \(A\), is in every moment of time, as the generating accelerative force \(E L\), that is, as \(\frac{3 P K \times T K}{T P}\) Let the time be reprefented by the man motion of the Moon, or (which comes to the fame thing) by the angle \(C T^{*} P\), or even by the arc \(C P\). At right angles upon \(C T\), ere \(\mathcal{t}\) \(C G\) equal to \(C T\). And fuppofing the quadrantal arc \(A C\) to be divided into an infinite number of equal parts \(P P \&\) c. there parts may reprefent the like infinite number of the equal parts of time. Let fall \(p k\) perpendicular on \(C T\); and draw \(T G\) meeting with \(K P\), \(k_{p}\) produc'd, in \(F\) and \(f\); then will \(F K\) be equal to \(T K\), and \(K k\) be to \(P K\) as \(P P\) to \(T_{P}\), that is, in a given proportion; and therefore \(F K \times K k\), or the area \(F K k f\), will be as \(\frac{3 P K \times T K}{T P}\), that is as \(E L\); and compounding, the whole area \(G C K F\) will be as the fum of all the forces \(E L\) imprefs'd upon the Moon in the whole time \(C P\); and therefore alto as the velocity generated by that fum, that is, as the acceleration of the description of the area CTP, or as the increment of the moment thereof. The force by which the Moon may in its periodic time \(C A D B\) of \(27^{\mathrm{d}} \cdot 7^{\mathrm{h}} .43^{\prime}\), beretain'd revolving about the Earth in reft at the diftance \(T P\), would cause a body, falling in the time \(C T\), to defcribe the length \(\frac{1}{2} C T\), and at the fame time to acquire a velocity equal to that with which the Moon

Book III. of Natural Philofophy. 265 is moved in its orbit. This appears from cor. 9. prop. 4. book 1. But fine \(K d\), drawn perpendicular on \(T P\), is but a third part of \(E L\), and equal to the half of \(T P\), or \(M L\), in the octants, the force \(E L\) in the octants, where it is greateft, will exceed the force \(M L\), in the properton of 3 to 2 ; and therefore will be to that force by which the Moon in its periodic time may be retain'd revolving about the Earth at reft, as 100 to \(\frac{2}{3} \times 17872 \frac{1}{2}\), or 11915 ; and in the time \(C T\) will generate a welocity equal to \(\frac{100}{11915}\) parts of the velocity of the Moon; but in the time \(C P A\), will generate a greater velocity in the proportion of \(C A\) to \(C T\) or \(T P\). Let the greateft force \(E L\) in the octants be reprefented by the area \(F K \times K k\), or by the rectangle \(\frac{1}{2} T P \times P p\), which is equal thereto. And the velocity which that greateft force can generate in any time \(C P\), will be to the velocity which any other lifer force \(E L\) can munov generate in the fame time, as the reCtangle \(\frac{1}{2} T P \times C P\) to the area \(K C G F\); but the velocities generated in the whole time \(C P A\), will be one to the other as the rectangle \(\frac{2}{2} T P \times C A\) to the triangle \(T C G\); or as the quadrantal arc \(C A\) to the radius TP. And therefore (by prop. 9. book 5 . elem.) the latter velocity generated in the whole time, will be \(\frac{100}{11915}\) parts of the velocity of the Moon. To this velocity of the Moon, which is proportional to the mean moment of the area (fuppofing this mean moment to be reprefented by the number 11915) we add and fubfraet the half of the other velocity; the fum 11915 - 50 , or 11965 will reprefent the greateft moment of the area in the fyzygy \(A\); and the difference 11915 - so, or 11865 , the leapt moment thereof in the quadratures. Therefore the areas, which in equal times, are defcribed in the fyzygies and quadratures, are, one to the other, as 11965 to 11865 . And if to the leaf moment in 86\%, we add a moment which fall be
to 100 , the difference of the two former moments as the trapezium \(F K C G\) to the triangle \(T C G\), or which comes to the fame thing, as the fquare of the fine \(P K\) to the fquare of the radius \(T P\), (that is, as \(P d\) to \(T P\)) the fum will reprefent the moment of the area, when the Moon is in any intermediate place \(P\).

But there things take place, only in the hypothefis that the Sun and the Earth are at reft, and that the Synodical revolution of the Moon is finifhed in 2.7 d. \(7^{\text {h }}\). \(43^{\prime}\). But fince the Moon's fynodical period is really. \(29^{\text {d. }} \cdot 12^{\text {h }} \cdot 44^{\text {' }}\), the increments of the moments muff be inlarge, in the fame proportion as the time is, that is, in the proportion of 1080853 to 1000000 . Upon which account, the whole increment, which was \(\frac{100}{11915}\) parts of the mean moment, will now become \(\frac{100}{1103}\) parts thereof. And therefore the moment of the area, in the quadrature of the Moon, will be to the moment thereof in the Syzygy, as 11023 -so to \(11023-1-50\); or as 10973 to 11073 ; and to the moment thereof when the Moon is in any intermediate place \(P\), as 10973 to 10973- \(\mid-P d\); that is, fuppofing \(T P=100\).

The area therefore, which the Moon, by a radius drawn to the Earth, defcribes in the feveral little equal parts of time, is nearly as the fum of the number 219,46 , and the verfed fine of the double diftance of the Moon from the nearest quadrature, confidered in a circle which hath unity for its radius. Thus it is, when the variation in the octants is in its mean quantity. But if the variation there is greater or left, that verfed fine mut be augmented or diminished in the fame propercion.

Book III. of Natural Philosophy.

\section*{Proposition XXVII. Problem ViII.} From the horary motion of the Moon, to find its diftance from the Earth.

The area which the Moon, by a radius drawn to the Earth, defrribes in every moment of time, is as the horary motion of the Moon, and the fquare of the diftance of the Moon from the Earth conjunctly. And therefore the diftance of the Moon from the Earth is in a proportion compounded of the fubduplicate proportion of the area directly, and the fubduplicate proportion of the horary motion inverfely. O. E. i.

Cor. I. Hence the apparent diameter of the Moon is given. For it is reciprocally as the diftance of the Moon from the Earth. Let aftronomers try how accurately this rule agrees with the phxnomena.

COR. 2. Hence allo the orbit of the Moon may be more exactly defin'd from the phænomena than hi-harta atura therto could be done.

\section*{Proposition XXVIII. Problem IX.}

To find the Diameters of the orbit, in which, without eccentricity, the Moon would move.
The curvature of the orbit which a body defcribes, if attrated in lines perpendicular to the orbit, is as the force of attraction directly, and the fquare of the velocity inverfely. 〈I eftimate the curvatures of lines, compared one with another, according to the evanefcent proportion of the fines or tangents of their angles of contact to equal radij, fuppofing thofe radij to be infinitely diminifhed. \(>\) But the attraction of the Moon towards the Earth in the fyzygies, is the excefs of its gravity.
gravity towards the Earth above the force of the Sun \({ }_{2} P K\) (fee Fig. prop. 25.) bywhich force, the accelerative gravity of the Moon towards the Sun exceeds the accelerative gravity of the Earth towards the Sun, or is exceeded by it. But in the quadratures that attraction is the fum of the gravity of the Moon towards the Earth, and the Sun's force \(K T\), by which the Moon is attracted towards the Earth. And thefe attractions, putting N for \(\frac{A T-1-C T}{2}\), are nearly as \(\frac{178725}{A T^{2}}+c \frac{2000}{C T} \times \mathrm{N}\) and \(\frac{178725}{C T^{2}}+\frac{1000}{A T \times \mathrm{N}}\), or as \(178725 \mathrm{~N} \times C T^{2}-2000 A T^{2} \times C T\), and 178725 \(\mathrm{N} \times A T^{2}-1-\mathrm{I} 000 C T^{2} \times A T\). For if the accelerative gravity of the Moon towards the Earth be reprefented by the number 17872 个, the mean force \(M L\), which in the quadratures is \(P T\) or \(T K\), and draws the Moon towards the Earth, will be 1000; and the mean force \(T M\), in the fyzygies will be 3000 ; from which, if we fubftract the mean force \(M L\), there will remain 2000, the force by which the Moon in the fyzygies is drawn from the Earth, and which we above called \({ }_{2} P K\). But the velocity of the Moon in the fyzygies \(A\) and \(B\), is to its velocity in the quadratures \(C\) and \(D\), as \(C T\) to \(A T\), and the moment of the area, which the Moon by a radius drawn to the Earth defcribes in the fyzygies, to the moment of that area defribed in the quadratures conjunctly; that is, as \(11073 C T\) to 10973 AT. Take this ratio twice inverfely, and the former ratio once direetly, and the curvature of the orb of the Moon in the fyzygies will be to the curvature thereof in the quadratures, as \(120406729 \times 178725\) \(A T^{2} \times C T^{2} \times \mathrm{N}-120406729 \times 2000 A T^{4} \times C T\), to \(122611329 \times 178725 A T^{2} \times C T^{2} \times \mathrm{N}+122611329\) \(\times 1000 C T^{4} \times A T\), that is, as \(2151969 A T \times C T \times\) \({ }_{12261 C T}{ }^{24}{ }^{3}\). \(A T^{3}\) to 2191371 AT \(\times C T \times \mathrm{N}+\)

Book III. of Natural Pbilofophy. 269
Becaufe the figure of the Moon's orbit is unknown, let desconveidaus, in its fleag, aflume the ellipfe DBC A, Pl. 10. Fig. 5. as ume in the centre of which we fuppofe the Earth to be fituated, and the greater axe de to lie between the qua- estar dratures, as the leffer \(A B\) between the fyzygies. But fince the plane of this ellipfe is revolved about the Earth by an angular motion, and the orbit, whofe curvature we now examine fhould be defcribed in a plane (void privad of) fuch motion; we are to confider the figure which the Moon, while it is revolved in that ellipfe, defcribes in this plane, that is to fay the figure \(C p a\), the feveral points \(P\) of which are found by affuming any point \(P\) in the ellipfe, which may reprefent the place of the Moon, and drawing \(T_{p}\) equal to \(T P\), in fuch manner that the angle \(P T P\) may be equal to the apparent motion of the Sun from the time of the laft quadrature in \(C\); or (which comes to the fame thing) that the angle \(C T\) p may be to the angle \(C T P\), as the time of the fynodic revolution of the Moon to the time of the periodic revolution thereof, or as \(29^{\mathrm{d}} \cdot 12^{\mathrm{h}} .44^{\text {, }}\), to \(27^{\text {d. }} \cdot 7^{\mathrm{h}} \cdot 43^{\prime}\). If therefore in this proportion we take the angle \(C T\) a to the right angle \(C T A\), and make \(T\) a of equal length with \(T A\); we fhall have a the lower, and \(C\) the upper apfis of this orbit. But by computation I find, that the difference betwixt the curvature of this orbit \(C p a\) at the vertex \(a\), and the curvature of a circle defcribed about the centre \(T\), with the interval \(T A\), is to the difference betwixt the curvature of the ellipfe at the vertex \(A\), and the curvature of the fame circle, in the duplicate proportion of the angle \(C T P\) to the angle \(C T_{p}\); and that the curvature of the ellipfe in \(A\), is to the curvature of that circle, in the duplicate proportion of \(T A\) to \(T C\); and the curvature of that circle to the curvature of a circle defcribed about the centre \(T\) with the interval \(T C\), as \(T C\) to \(T A\); but that the curvature of this laft arch is to the curvature of the ellipfe in \(C\), in the du-
plicate
plicate proportion of \(T A\) to \(T C\); and that the difference betwixt the curvature of the ellipfe in the vertex \(C\), and the curvature of this laft circle, is to the difference betwixt the curvature of the figure Tpa, at the vertex \(C\), and the curvature of this fame laft circle, in the duplicate proportion of the angle \(C T p\) to the angle CTP. All which proportions are eafily drawn from the fines of the angles of contact, and of the differences of thofe angles. But by comparing thofe proportions together, we find the curvature of the figure \(C_{p a}\) at \(a\), to be to its curvature at \(C\), as

ya-tea \(\times C T\). Where the number \(-\frac{168824}{0.0}\) reprefents the difference of the fquares of the angles \(C T P\) and \(C T p\); applied to the fquare of the leffer angle \(C T P\); or (which is all one) the difference of the fquares of the times \(27^{\text {d }} \cdot 7^{\mathrm{h}} \cdot 43^{\text {' }}\), and \(29^{\text {d }} \cdot 12^{\mathrm{h}} \cdot 44^{\text {' }}\). applied to the fquare of the time \(27^{\text {d }} \cdot 7^{\text {h}} \cdot 43^{\text { }}\).
ya geve Since therefore a reprefents the fyzygy of the Moon, and \(\bar{C}\) its quadrature, the proportion now found muft be the fame with that proportion of the curvature of the Moon's orb in the fyzygies, to the curvature thereof in the quadratures, which we found above. Therefore, in order to find the proportion of \(C T\) to \(A T\), Let us multiply the extremes and the means, and the terms which come out applied to \(A T \times C T\), become 2062,79 \(C T^{4}-2151969 \mathrm{~N} \times C T^{3}-1-368676 \mathrm{~N}\) \(\times A T \times C T^{2}-1-3634^{2} A T^{2} \times C T^{2}-362047 \mathrm{~N} \times\) \(A T^{2} \times C T+^{2} 19137 \mathrm{IN} \times A T^{3}-1-4051,4 A T^{4}\) \(=0\). Now if for the half fum N of the terms \(A T\) and \(C T\), we put I , and \(x\) for their half difference; then \(C T\) will be \(=1-1-x\), and \(A T=1-x\). And fubftituting thofe values in the equation, after refolving thereof, we fhall find \(x=0,00719\); and from thence the femidiameter \(C T=1,00719\), and the femidiameter \(A T=0,9928 \mathrm{I}\), which numbers are nearly as \(70 \frac{1}{2} \frac{1}{4}\), and \(69 \frac{1}{\frac{1}{5}+}\). Therefore the Moon's diftance from the Earth

Book III. of Natural Pbilofophy.
Earth in the fyzygies, is to its diffance in the quadratures (Fetting a fide the confideration of eccentricity) daubo de lade as \(\sigma_{2}^{\frac{7}{7} 7}\) to \(70 \frac{1}{2}\); or in round numbers as \(\sigma_{9}\) to 70 .

\section*{Proposition XXIX. Problem X.}

To find the variation of the Moon.
This inequality is owing partly to the elliptic figure of didide. the Moon's orbit, partly to the inequality of the moments. of the area which the Moon by a radius drawn to the Earth defcribes. If the Moon \(P\) revolved in the ellipfe \(D B C A\), about the Earth quiefcent in the centre of the ellipfe, and by the radius TP, drawn to the Earth, defrribed the area \(C T P\), proportional to the time of defcription; and the greateft femidiameter \(C T\) of the ellipfe was to the leaft \(T A\) as 70 to \(\sigma 9\); the tangent of the angle CTP would be to the tangent of the angle of the mean motion computed from the quadrature \(C\), as the femidiameter \(T A\) of the ellipfe, to its femidiameter \(T C\), or as \(\sigma 9\) to 70 . But the defcription of the area CTP, as the Moon advances from the quadrature to the fyzygy, ought to be in fuch manner accelerated, that the moment of the area in the Moon's ryzygy, may be to the moment thereof in its quadrature, as 11073 to 10973; and that the excefs of the moment in any intermediate place \(P\), above the moment in the quadrature, may be as the fquare of the fine of the angle \(C T P\). Which we may effect with accuracy enough, if we diminifh the tangent of the argle \(C T P\), in the fubduplicate proportion of the number 10973 to the number 11073 , that is, in proportion of the number 68,6877 to the number 69. Upon which account the tangent of the angle CTP, will now be to the tangent of the mean motion, as 68,6877 to 70 ; and the angle \(C T P\), in the octants, where the
mean motion is \(45^{\circ}\), will be found \(44^{\circ} \cdot 27^{\prime} \cdot 28^{\prime \prime}\). which fubfrated from \(45^{\circ}\). the angle of the mean motion, leaves the greateft variation \(32^{\prime} .32^{\prime \prime}\). Thus it would be, if the Moon in paffing from the quadrature to the fyzygy, defcribed an angle \(C T A\) of 90 degrees only. But becaufe of the motion of the Earth, by which the Sun is apparently transferr'd in confequentia, the Moon, before it overtakes the Sun, delcribes an angle CTa, greater than a right angle, in the proportion of the time of the fynodic revolution of the Moon, to the time of its periodic revolution, that is, in the proportion of \(29^{\text {d }} \cdot 12^{\text {h }} \cdot 44^{\text {d }}\). to \(27^{\text {d }} \cdot 7^{\text {h }} \cdot 43^{\text {B }}\). Whence it comes to pafs, that all the angles about the centre \(T\), are dilated in the fame proportion, and the greateft variation, which otherwife would be but \(32^{\prime} .32^{\prime \prime}\), now augmented in the faid proportion becomes \(35^{\circ} .10^{\prime \prime}\).

And this is its magnitude in the mean diftance of the Sun from the Earth, neglecting the differences, which may arife from the curvature of the orbis magnus, and the flronger action of the Sun upon the Moon when horn'd and new, than when gibbous and full. In other diftances, of the Sun from the Earth, the greatelt variation is in a proportion compounded of the duplicate proportion of the time of the fynodic revolution of the Moon (the time of the year being given) directly, and the triplicate proportion of the diftance of the Sun from the Earth, inveriely. And therefore, in the apogee of the Sun, the greatef variation is \(33^{\prime} .14^{\prime \prime}\), and in its perigee, \(37^{\prime} .11^{\prime \prime}\), if the eccentricity of the Sun is to the tranfverfe femidiameter of the orbis magnus, as 16 \(\frac{2}{2} \frac{5}{6}\) to 1000 .

Hitherto we have inveftigated the variation in an orb not eccentric, in which, to wit, the Moon in its octants is always in its mean diftance from the Earth. If the Moon, on account of its eccentricity, is more or lefs removed from the Earth, than if placed in this orb, the variation may be fomething greater, or fomething

Book III. of Natural Pbilooophy:
thing lefs, than according to this rule. But I leave the excefs or defect to the determination of aftronomers from the phxnomena.

\section*{Proposition XXX. Problem XI.}

To find the horary motion of the nodes of the Moon in a circular orbit, Pl. II. Fig. I.

Let \(S\) reprefent the Sun, \(\boldsymbol{T}\) the Earth, \(P\) the Moon, \(N P n\) the orbit of the Moon, \(N p n\) the orthographic projection of the orbit upon the plane of the ecliptic; \(N, n\) the nodes; \(n T N m\), the line of the nodes produced indefinitely ; \(P I, P K\) perpendiculars upon the lines \(S T, O_{q} ; P p\) a perpendicular upon the plane of the ecliptic; \(A, B\) the Moon's fyzygies in the plane of the ecliptic; \(A Z\) a perpendicular let fall upon \(N n\), the line of the nodes; \(O, q\) the quadratures of the Moon in the plane of the ecliptic, and \(p K\), a perpendicular on the line \(O q\) lying between the quadratures. The force of the Sun to difturb the motion of the Moon (by prop. 25 .) is twofold, one proportional to the line \(L M\), the other to the line \(M T\), in the fcheme of that propofition. And the Moon by the former force is drawn towards the Earth, by the latter towards the Sun, in a direction parallel to the right line ST joining the Earth and the Sun. The former force \(L M\) aets in the direction of the plane of the Moon's orbit, and therefore makes no change upon the fituation thereof, and is upon that account to be neglected. The latter force \(M T\), by which the plane of the Moon's orbit is difturbed, is the fame with the force \(3 P K\) or 3 IT. And this force (by prop. 25.) is to the force, by which the Moon may, in its periodic time, be uniformly revolved in a circle abour the Earth at reft, as \(3 I T\) to the radius of the circle multiplied by the Vol. II. T number tiplied by 59,575 . But in this calculus, and all that follows I confider all the lines drawn from the Moon to the Sun, as parallel to the line which joins the Earth and the Sun, becaufe what inclination there is, almoft as much diminihes all effects in fome cafes, as it augments them in others, and we are now enquiring after the mean motions of the nodes, negleating fuch niceties as are of no moment, and would only ferve to tender the calculus more perplext.

Now fuppofe \(P M\) to reprefent an arc which the Moon defcribes in the leaft moment of time, and \(M L\) a little line, the half of which the Moon, by the impulfe of the faid force \(3 I T\), would defcribe in the fame time. And joining \(P L, M P\), let them be produced to \(m\) and \(l\), where they cut the plane of the ecliptic, and upon \(T_{m}\) let fall the perpendicular PH. Now fince the right line \(M L\) is parallel to the plane of the ecliptic, and therefore can never meet with the right line \(m l\) which lies in that plane, and yet both thofe right lines lye in one common plane LLM \(P m l\), they will be parallel, and upon that account the triangles \(L M P,{ }^{\prime}{ }^{l} m P\) will be fimilar. And feeing \(M P m\) lies in the plane of the orbit, in which the Moon did move while in the place \(P\); the point \(m\) will fall upon the line \(N n\), which paffes through the nodes \(N, n\), of that orbit. And becaufe the force by which the half of the little line \(L M\) is generated, if the whole had been together, and at once impreffed in the point \(P\), would have generated that whole line, and caufed the Moon to move in the arc whofe chord is \(L P\); that is to fay, would have transferred the Moon from the plane \(M P m T\) into the plane \(L P l T\); therefore the angular motion of the nodes generated by that force, will be equal to the angle \(m T l\). But \(m l\) is to \(m P\), as \(M L\) to \(M P\); and fince \(M P\), becaufe of the time given, is alfo given, \(m l\) will be as the rec- tangle \(M L \times m P\), that is, as the rectangle \(I T \times m P\). And, if \(T m l\) is a right angle, the angle \(m T l\) will be as \(\frac{m l}{T m}\) and therefore as \(\frac{I T \times P m}{T m}\), that is, (becaufe \(\tau m\) and \(m P, T P\) and \(P H\) are proportional) as \(I T \times P H\)
\(T P\); and therefore, becaufe \(T P\) is given, as \(I T \times P H\). But if the angle \(T m l\) or \(S T N\) is oblique, the angle \(m T l\) will be yet lefs, in proportion of the fine of the angle \(S T N\) to the radius, or \(A Z\) to \(A T\). And therefore the velocity of the nodes, is as ITX \(P H \times A Z\), or as the folid content of the fines of the three angles, \(T P I, P T N\), and \(S T N\).

If thefe are right angles, as happens when the nodes aesentcea are in the quadratures, and the Moon in the fyzygy, the little line \(m l\) will be removed to an infinite diftance, and the angle \(m T l\) will become equal to the angle \(m P l\). But in this cafe the angle \(m P l\) is to the angle \(P T M\), which the Moon in the fame time by its apparent motion defcribes about the Earth, as 1 to 59,575. For the angle \(m P l\) is equal to the angle \(L P M\), that is, to the angle of the Moon's deflexion from a rectilinear path, which angle, if the gravity of the Moon hould have then cealed, the faid force of the Sun \({ }_{3} I T\) would by it felf have generated in that given time; and the angle \(P T M\) is equal to the angle of the Moon's deflexion from a rectilinear path, which angle, if the force of the Sun \(3 I T\) fhould have then ceafed, the force alone by which the Moon is retained in its orbit would have generated in the fame time. And thefe forces (as we have above fhew'd) are, the one to the other, as ito 59,575. Since therefore, the mean horary motion of the Moon (in refpect of the fixt Stars) is \(32^{\prime} \cdot 56^{\prime \prime} \cdot 27^{\prime \prime \prime}\). \(12 \frac{1}{2}\) iv, the horary motion of the node in this cafe will be \(33^{\prime \prime} .10^{\prime \prime \prime} .33^{\mathrm{iv}}\). \(12^{\mathrm{v}}\). But in other cales, the horary motion will be to \(33^{\prime \prime}\). T 2 the three angles TPI, PT N and STN (or of the diftances of the Moon from the quadrature, of the Moon from the node, and of the node from the Sun) to the cube of the radius. And as often as the fine of any angle is changed from pofitive to negative, and from negative to pofitive, fo often mut the regreffive be changed into a progreffive, and the progreffive into a regreffive motion. Whence it comes to pats, that the nodes are progreffive, as often as the Moon happens to be placed between either quadrature, and the node neareft to that quadrature. In other cafes, they are regreffive, and by the excess of the regress above the progrefs, they are monthly transferred in antecedentia.

Cor. r. Hence if from \(P\) and \(M\), the extreme points of a leaf arc PM, Pl. ir. Fig. 2. on the line \(O q\) joining the quadratures we let fall the perpendiculars \(P K, M k\), and produce the fame till they cut the line of the nodes \(N n\), in \(D\) and \(d\); the horary motion of the nodes will be as the area \(M P D d\), and the fquare of the tine \(A Z\) conjunctly. For let \(P K\), \(P H\) and \(A Z\) be the three fid fines, viz. \(P K\) the fine of the diftance of the Moon from the quadrature, \(\boldsymbol{P} H\) the fine of the diftance of the Moon from the node, and \(A Z\) the fine of the diftance of the node from the Sun: and the velocity of the node will be as the fold content of \(P K \times P H \times A Z\). But \(P T\) is to \(P K\), as \(P M\) to \(K k\); and therefore, because \(P T\) and \(P M\) are given, \(K k\) will be as \(P K\). Likewife \(A T\) is to \(P D\), as \(A Z\) to \(P H\), and therefore \(P H\) is as the rectangle \(P D \times A Z\), and by compounding thole proportions, \(P K \times P H\) is as the fold content \(K k \times P D \times A Z\), and \(P K \times P H \times A Z\), as \(K k\) \(\times P D \times A Z^{2}\). that is, as the area \(P D d M\) and \(A Z^{2}\) conjunctly. Q. E. D.

Cor. 2. In any given pofition of the nodes, their mean horary motion is half their horary motion in the Moon's fyzygies; and therefore is to \(16^{\prime \prime} .35^{\prime \prime \prime}\). \(16^{\mathrm{iv}} .3 \sigma^{\mathrm{v}}\), as the fquare of the fine of the diftance of the nodes from the fyzygies to the fquare of the radius, or as \(A Z^{2}\), to \(A T^{2}\). For if the Moon, by an uniform motion defcribes the femicircle \(Q A q\), the fum of all the areas \(P D d M\) during the time of the Moon's paffage from \(Q\) to \(M\), will make up the area \(Q M d E\), terminating at the tangent \(Q E\) of the circle. And by the time that the Moon has arrived at the point \(n\), that fum will make up the whole area \(E O A n\) defcribed by the line \(P D\); but when the Moon proceeds from \(n\) to \(q\), the line \(P D\) will fall without the circle, and will defcribe the area nge, terminating at the tangent \(g e\) of the circle; which area, becaufe the nodes were before regreffive, but are now progreffive, muft be fubducted from the former area, and being it felf equal to the area \(O E N\), will leave the femicircle \(N O A n\). While therefore the Moon defribes a femicircle, the fum of all the areas \(P D d M\) will be the area of that femicircle; and while the Moon defribes a complete circle, the fum of thofe areas will be the area of the whole circle. But the area \(P D d M\), when the Moon is in the fyzygies is the rectangle of the arc \(P M\) into the radius \(P T\); and the fum of all the areas, every one equal to this area, in the time that the Moon defcribes a complete circle is the rectangle of the whole circumference into the radius of the circle; and this rettangle, being double the area of the circle, will be double the quantity of the former fum. If therefore the nodes went on with that velocity uniformly continued, which they acquire in the Moon's fyzygies, they would defcribe a fpace double of that which they defcribe in fact; and therefore the mean motion, by which, if uniformly continued, they would defcribe the fame fpace with that which they do in fact defcribe
by an unequal motion, is but one half of that motion which they are poifefled of in the Moon's fyzygies. Wherefore fince their greateft horary motion, if the nodes are in the quadratures, is \(33^{\prime \prime} .10^{\prime \prime \prime} .33^{\text {iv. }} .12^{\mathrm{v}}\), their mean horary motion in this cafe will be \(\mathbf{1 6}^{\prime \prime}\). \(35^{\prime \prime \prime} \cdot 16^{\mathrm{iv}} \cdot 36^{\mathrm{v}}\). And feeing the horary motion of the nodes is every where as \(A Z^{2}\) and the area PDdM conjunctly, and therefore in the Moon's fyzygies, the horary motion of the nodes is as \(A Z^{2}\) and the area \(P D d M\) conjunctly, that is, (becaufe the area \(P D d M \mathrm{~d} \mathrm{~d}\) fribed in the fyzygies is given) as \(A Z^{2}\); therefore the mean motion alfo will be as \(A Z^{2}\), and therefore when the nodes are without the quadratures, this motion will be to \(16^{\prime \prime}\). \(35^{\prime \prime \prime} \cdot 16^{\text {iv. }} 3^{\sigma^{\mathrm{v}}}\). as \(A Z^{2}\) to \(A T^{2}\). Q. E. D.

\section*{Proposition XXXI. Problem XII.} To find the horary motion of the nodes of the Moon in an elliptic orbit, Pl. 12. Fig. I.

Let \(O p m a q\) reprefent an ellipfe, defrribed with the greater axe \(O q\), and the leffer axe \(a b ; Q A q B\) a circle circumfcribed; \(T\) the Earth in the common centre of both; \(S\) the Sun; \(p\) the Moon moving in this ellipfe; and \(p m\) an arc which it defcribes in the leaft moment of time; \(N\) and \(n\) the nodes joined by the line \(N n ; p K\) and \(m k\) perpendiculars upon the axe \(Q q\), produced both ways till they meet the circle in \(P\) and \(M\), and the line of the nodes in \(D\) and \(d\). And if the Moon, by a radius drawn to the Earth, defrribes an area proportional to the time of defcription, the horary motion of the node in the ellipfe will be as the area \(p D d m\), and \(A Z^{2}\) conjunctly.

For let \(P F\) touch the circle in \(P\), and produced meet \(T N\) in \(F\); and \(p f\) touch the ellipfe in \(p\), and produced meet the fame \(T N\) in \(f\), and both tangents concur

Phute.N.Vil.II. P. \(27 \boldsymbol{J}^{\circ}\).

in the axe \(T Q\) at \(r\). And let \(M L\) reprefent the fpace which the Moon, by the impulfe of the abovementioned force \(3 I T\) or \(3 P K\), would defcribe with a tranfverfe motion, in the mean time while, revolving in the circle it defcribes the \(\operatorname{arc} P M\); and \(m l\) denote the fpace, which the Moon revolving in the ellipfe would defcribe in the fame time by the impulfe of the fame force \({ }_{3} I T\) or \({ }_{3} P K\); and let \(L P\) and \(l p\) be produced till they meet the plane of the ecliptic in \(G\) and \(g\), and \(F G\) and \(f g\) be joined, of which \(F G\) produced may cut \(p f, p g\), and \(T Q\) in \(c, e\) and \(R\) refpectively; and \(f g\) produced may cut \(T O\) in \(r\). Becaure the force \(3 I T\) or \(3 P K\) in the circle, is to the force \(3 I T\) or \(3 p K\) in the ellipfe, as \(P K\) to \(p K\), or as \(A T\) to \(a T\); the 'fpace \(M L\), generated by the former force, will be to the fpace \(m l\) generated by the latter, as \(P K\) to \(p K\), that is, becaufe of the fimilar figures \(P Y K P\), and \(F Y R c\), as \(F R\) to \(c R\). But (becaufe of the fimilar triangles \(P L M, P G F) M L\) is to \(F G\), as \(P L\) to \(P G\), that is (on account of the parallels \(L k, P K, G R\)) as \(p l\) to \(p e\), that is, (becaufe of the fimilar triangles \(p l m\), \(c p e\)) as \(l m\) to \(c e\); and inverfely as \(L M\) is to \(l m\), or as \(F R\) is to \(c R\), fo is \(F G\) to ce. And therefore if \(f g\) was to \(c e\), as \(f y\) to \(c r\), that is as \(f r\) to \(c R\), (that is as \(f r\) to \(F R\) and \(F R\) to \(c R\) conjunctly, that is, as \(f T\) to \(F T\), and \(F G\) to \(c e\) conjunctly) becaure the ratio of \(F G\) to \(c e\), expung'd on both fides, leaves the ratios \(f g\) to \(F G\) and \(f T\) to \(F T, f g\) would be to \(F G\), as \(f T\) to \(F T\); and therefore the angles which \(F G\) and \(f g\) would fubtend at the Earth \(T\) would be equal each to other. But thefe angles, (by what we have fhew'd in the preceding propofition) are the motions of the nodes, while the Moon defrribes, in the circle the arc \(P M\), in the ellipfe the arc \(p m\) : And therefore the motions of the nodes in the circle, and in the ellipfe, would be equal to each other. Thus I fay it would be if \(f g\) was to \(c e\), as \(f Y\) to \(c Y_{2}\), that is, if \(f g\) was equal to \(\frac{c e \times f r}{c r}\). But becaufe of the \(\sqrt{1}-\) milar triangles \(f g p, c e p, f g\) is to \(c e\) as \(f p\) to \(c p\); and therefore \(f g\) is equal to \(\frac{c e x f p}{c p}\); and therefore the angle which \(f g\) fubtends in fact, is to the former angle which \(F G\) fubtends, that is to fay, the motion of the nodes in the elliple is to the motion of the fame in the circle, as this \(f g\) or \(\frac{c e \times f p}{c p}\), to the former \(f g\) or \(\frac{c e \times f r}{c r}\), that is as \(f p \times c r\) to \(f r \times c p\), or as \(f p\) to \(f r\), and \(c r\) to \(c p\), that is, if \(p h\) parallel to \(T N\) meet \(F P\) in \(h\), as \(F b\) to \(F r\) and \(F r\) to \(F P\); that is, as \(F b\) to \(F P\) or \(D p\) to \(D P\), and therefore as the area \(D p m d\) to the area \(D P M d\). And therefore feeing (by corol. I. prop. 30.) the latter area and \(A Z^{2}\) conjunctly are proportional to the horary motion of the nodes in the circle, the former area and \(A Z^{2}\) conjunEtly will be proportional to the horary motion of the nodes in the ellipfe. O. E D.

Cor. Since therefore in any given pofition of the nodes, the fum of all the areas \(p D d m\), in the time while the Moon is carried from the quadrature to any place \(m\), is the area \(m p Q E d\) terminared at the tangent of the ellipfe \(Q E\); and the fum of all thofeareas, in one entire revolution, is the area of the whole elipfe: the mean motion of the nodes in the ellipfe will be to the mcan motion of the nodes in the circle,as the elliple to the circle; that is, as \(T a\) to \(T A\) or 69 to 72 . And therefore. fince (by corol. 2. prop. 30.) the mean horary morion of the nodes in the circle is to \(16^{\prime \prime} .35^{\prime \prime \prime} .16^{\mathrm{iv}} \cdot 36^{\mathrm{v}}\). as \(A Z^{2}\) to \(A T^{2}\), if we take the angle \(16^{\prime \prime} .2 \mathrm{I}^{\prime \prime \prime} .3^{\mathrm{iv}} .30^{\mathrm{v}}\). to the angle \(16^{\prime \prime} \cdot 31^{\prime \prime \prime} .16^{\mathrm{iv}} .36^{\mathrm{N}}\). as 69 to 70 , the mean horary motion of the nodes in the elliple will be to \(16^{\prime \prime} \cdot 2 \mathrm{I}^{1 \prime \prime} \cdot 13^{\mathrm{iv}}\). \(30^{v}\). as \(A Z^{2}\) to \(A T^{2}\); that is, as the fquare of the fine of the diftance of the node from the Sun to the fquare of the radius.

Book III. of Natural Pbilofophy.. 28r
But the Moon, by a radius drawn to the Earth, defribes the area in the fyzygies with a greater velocity than it does that in the quadratures, and upon thataccount the time is contracted in the fyzygies, and prolong'd in the quadratures; and together with the time the motion of the nodes is likewife augmented or diminifh'd. But the moment of the area in the quadrature of the Moon, was to the moment thereof in the fyzygies as 10973 to 11073 ; and therefore the mean moment in the octants is to the excefs in the fyzygies, and to the defect in the quadratures, as 11023 , the half fum of thofe numbers, to their half difference so. Wherefore fince the time of the Moon's mora'in the feveral little equal parts of its orbit, is reciprocally as its velocity; the mean time in the octants will be to the excefs of the time in the quadratures, and to the defect of the time in the fyzygies, arifing from this caufe, nearly as 11023 to 50 . But reckoning from culeutand the quadratures to the fyzygies, I find that the excefs of the moments of the area, in the feveral places, above the leaft moment in the quadratures, is nearly as the fquare of the fine of the Moon's diftance from the quadratures; and therefore the difference betwixt the moment in any place, and the mean moment in the octants, is as the difference betwixt the fquare of the fine of the Moon's diftance from the quadratures, and the fquare of the fine of 45 degrees, or half the fquare of the radius; and the increment of the time in the feveral places between the octants and quadratures, and the decrement thereof between the octants and fyzygies is in the fame proportion. But the motion of the nodes while the Moon defcribes the feveral little equal parts of its orbit, is accelerated or retarded in the duplicate proportion of the time. For that motion while the Moon defcribes PM, is (cateris paribus) as \(M L\), and \(M L\) is in the duplicate proportion of the time. Wherefore the motion of the nodes in the fyzygies,
in the time while the Moon defrribes giv'n little parts of its orbit, is diminifh'd in the duplicate proportion of the number 11073 to the number 11023 ; and the decrement is to the remaining motion as 100 to 10973 ; but to the whole motion as 100 to 11073 nearly. But the decrement in the places between the octants and fyzygies, and the increment in the places between the octants and quadratures, is to this decrement, nearly as the whole motion in there places to the whole motion in the fyzygies, and the difference betwixt the fquare of the fine of the Moon's diftance from the quadrature, and the half fquare of the radius, to the half fquare of the radius conjunctly. Wherefore, if the nodes are in the quadratures, and we take two places, one on one fide, one on the other, equally diftant from the octant and other two diftant by the fame interval, one from the fyzygy, the other from the quadrature, and from the decrements of the motions in the two places between the fyzygy and octant, we fubtract the increments of the motions in the two other places between the octant and the quadrature; the remaining decrement will be equal to the decrement in the fyzygy: as will eafily appear by computation. And therefore the mean decrement, which ought to be fubducted from the mean motion of the nodes, is the fourth part of the decrement in the fyzygy. The whole horary motion of the nodes in the fyzygies (when the Moon by a radius drawn to the Earth, was fuppos'd to defcribe an area proportional to the time) was \(32^{\prime \prime} \cdot 42^{\prime \prime \prime} \cdot 7^{1 v}\). And we have fhew'd, that the decrement of the motion of the nodes, in the time while the Moon, now moving with greater velocity, defcribes the fame fpace, was to this motion as 100 to 11073 ; and therefore this decrement is \(17^{\prime \prime} .43^{\mathrm{iv}} .11^{\mathrm{v}}\). The fourth part of which \(4^{\text {"I }} \cdot 25^{\text {iv }} \cdot 4^{8^{\mathrm{v}}}\). fubtracted from the mean horary motion above found \(16^{\prime \prime} \cdot 21^{\prime \prime \prime} \cdot 3^{\text {iv }} \cdot 30^{\text {v }}\). leaves \(16^{\prime \prime} \cdot 16^{\prime \prime \prime} \cdot 37^{\mathrm{iv}} \cdot 42^{\mathrm{v}}\). their correct mean horary motion.

\section*{Book III. of Natural Philofophy. 283}

If the nodes are without the quadratures, and two fruta is places are confider'd, one on one fide, one on the other equally diftant from the fyzygies; the fum of the motions of the nodes when the Moon is in thofe places, will be to the fum of their motions, when the Moon is in the fame places and the nodes in the quadratures, as \(A Z^{2}\), to \(A T^{2}\). And the decrements of the motions, arifing from the caufes but now explained, intriens will be mutually as the motions themfelves, and therefore the remaining motions will be mutually betwixt themfelves as \(A Z^{2}\). to \(A T^{2}\). And the mean motions will be as the remaining motions. And therefore in any giv'n pofition of the nodes, their correct mean horary motion is to \(16^{\prime \prime} \cdot 16^{\prime \prime \prime} \cdot 37^{\text {iv. }} \cdot{42^{2}}^{\mathrm{v}}\). as \(A Z^{2}\), to \(A T^{2}\). that is, as the fquare of the fine of the diffance of the nodes from the fyzygies to the fquare of the radius.

\section*{Proposition XXXIII. Problem XIII.}

\section*{To find the mean motion of the nodes of the Moon. Pl. 12. Fig. 2.}

The yearly mean motion is the fum of all the mean horary motions, throughout the courfe of the year. Suppofe that the rode is in \(N\), and that after ev'ry hour is claps'd, it is drawn back again to its former place; fo that, notwithftanding its proper motion, it may conftantly remain in the fame fituation, with refpect to the fixt Stars; while in the mean time the Sun \(S\), by the motion of the Earth, is feen to leave the node and to proceed till it compleats its apporent annual courfe by an uniform motion. Let \(A\) a reprefent a given leaft arc, which the right line \(T S\) always drawn to the Sun, by its interfection with the circle \(N A n\), defcribes in the leaft given moment of time; and the meap
mean horary motion (from what we have above fhew'd) will be as \(A Z^{2}\), that is (becaufe \(A Z\) and \(Z r\) are proportional) as the rectangle of \(A Z\) into \(Z Y\), that is, as the area \(A Z Y\) a. And the fum of all the mean horary motions from the beginning will be as the fum of all the areas arZ \(A\), that is as the area \(N A Z\). But the greateft \(A Z r_{a}\) is equal to the rectangle of the arc \(A a\) into the radius of the circle; and therefore the fum of all thefe rectangles in the whole circle, will be to the like fum of all the greareft rectangles, as the area of the whole circle to the retangle of the wholecircumference into the radius, that is, as x to 2 . But the horary motion correfponding to that greateft reCtangle, was \(16^{\prime \prime}\). \(16^{\prime \prime \prime} \cdot 37^{\text {iv }} \cdot 42^{2}\). and this motion in the complete courfe of the fidereal year \(365^{\mathrm{d}} \cdot 6^{\mathrm{h}} \cdot 9^{\prime}\). amounts to \(39^{\circ}\). \(38^{\prime}\). \(7^{\prime \prime \prime} \cdot 50^{\prime \prime \prime} \cdot\) and therefore the half thereof \(19^{\circ} \cdot 49^{\prime}\). \(3^{\prime \prime}\). \(55^{\prime \prime \prime}\). is the mean motion of the nodes correlponding to the whole circle. And the motion of the nodes, in the time while the Sun is carry'd from \(N\) to \(A\) is to \(19^{\circ} \cdot 49^{\prime} \cdot 3^{\prime \prime} \cdot 55^{\prime \prime \prime}\). as the area \(N A Z\) to the whole circle.

Thus it would be if the node was after every hour drawn back again to its former place, that fo, after a compleat revolution, the Sun at the year's end would be found again in the fame node which it had left when the year begun. But becaufe of the motion of the node in the mean time, the Sun muft needs meet the node fooner, and now it remains that we compute the abreviation of the time. Since then the Sun, in the courfe of the year, travels 360 degrees, and the node in the fame time by its greateft motion would be carried \(39^{\circ} \cdot 38^{\prime \prime} \cdot 7^{\prime \prime} \cdot 50^{\prime \prime \prime}\), or 39,6355 degrees; and the mean motion of the node in any place \(N\), is to its mean motion in its quadratures, as \(A Z^{2}\) to \(A T^{2}\) : the motion of the Sun will be to the motion of the node in \(N\), as \(360 A T^{2}\), to \(39,6355 A Z^{2}\); that is, as 9,0827646 \(A T^{2}\) to \(A Z^{2}\). Wherefore if we fuppofe the circum-
ference

Book III. of Natural Philofophy. 285
ference \(N A n\) of the whole circle to be divided into little equal parts, fuch as \(A a\), the time in which the Sun would defribe the little arc \(A a\), if the circle was quiefcent, will be to the time of which it would defcribe the fame arc, fuppofing the circle together with the nodes to be revolv'd about the centre \(T\), reciprocally as \(9,0827646 A T^{2}\) to \(9,0827646 A T^{2}\)-1 \(A Z^{2}\). For the time is reciprocally as the velocity with which the little arc is defrrib'd, and this velocity is the fum of the velocities of both Sun and node. If therefore the fector NT \(A\) reprefent the time in which the Sun by it felf, without the motion of the node, would defrribe the \(\operatorname{arc} N A\), and the indefinitely fmall part \(A T a\) of the fector reprefent the little moment of the time, in which it would defcribe the leaft \(\operatorname{arc} A a\); and (letting fall a \(Y_{\text {perpendicular upon } N n \text {) }}\) if in \(A Z\) we take \(d Z\), of fuch length, that the rectangle of \(d Z\) into \(Z Y\), may be to the leaft part \(A T a\) of the fector, as \(A Z^{2}\) to \(9,0827646 A T^{2}-1-A Z^{2}\), that is to fay, that \(d Z\) may be to \(\frac{1}{2} A Z\), as \(A T^{2}\) to \(9,0827646 A T^{2}+A Z^{2}\); the rectangle of \(d Z \mathrm{in}\) to \(Z r\) will reprefent the decrement of the time arifing from the motion of the node, while the arc \(A a\) is defcrib'd. And if the curve \(N d G n\) is the locus where the point \(d\) is always found, the curvilinear area \(N d Z\) will be as the whole decrement of time while the whole \(\operatorname{arc} N A\) is defcrib'd. And therefore, the excefs of the fettor \(N A T\) above the area \(N d Z\) will be as the whole time. But becaufe the motion of the node in a lefs time, is lefs in proportion of the time, the area AarZ muft alfo be diminih'd in the fame proportion. Which may be done by taking in \(A Z\) the line \(e Z\) of fuch length, that it may be to the length of \(A Z\), as \(A Z^{2}\) to \(9,0827646 A T^{2}+A Z^{2}\). For fo the rectangle of \(e Z\) into \(Z T\), will be to the area \(A Z Y a\), as the decrement of the time in which the \(\operatorname{arc} A a\) is defcrib'd, to the whole time in which it would efcent. And therefore that rectangle will be as the decrement of the motion of the node. And if the curve
\(\qquad\) \(N e F n\) is the locus of the point \(e\), the whole area \(N e Z\), which is the fum of all the decrements of that motion, will be as the whole decrement thereof during the time in which the arc \(A N\) is defcrib'd; and the remaining area \(N A e\) will be as the remaining motion, which is the true motion of the node, during the time in which the whole arc \(N A\) is defcrib'd by the joint motions of both Sun and node. Now the area of the femicircle is to the area of the figure \(N e F n\) found by the method of infinite feries, nearly as 793 to 60 . But the motion correfponding or proportional to the whole circle was \(19^{\circ} 49^{\prime} \cdot 3^{\prime \prime} .55^{\prime \prime \prime}\). and therefore the motion correfponding to double the figure \(N_{c} F_{n}\) is \(1^{\circ} .29^{\circ}\). \(58^{\prime \prime} .2^{\prime \prime \prime}\). which taken from the former motion leaves \(18^{\circ} .19^{\prime} \cdot 5^{\prime \prime} \cdot 53^{\prime \prime \prime} \cdot\) the whole motion of the node with refpect to the fixed Stars in the interval between two of its conjunctions with the Sun; and this motion fubducted from the annual motion of the Sun \(360^{\circ}\). leaves \(341^{\circ} \cdot 40^{\prime} \cdot 54^{\prime \prime} \cdot 7^{\prime \prime \prime}\). the motion of the Sun in the interval between the fame conjunctions. But as this motion is to the annual motion \(360^{\circ}\). fo is the motion of the node but juft now found \(18^{\circ} 19^{\prime \prime}\). \(s^{\prime \prime} \cdot 53^{\prime \prime \prime}\). to its annual motion which will therefore be \(19^{\circ} .18^{\prime} \cdot 1^{\prime \prime} .23^{\prime \prime \prime}\). And this is the mean motion of the nodes in the fidercal year. By aftronomical tables it is \(19^{\circ} .21^{\prime} .21^{\prime \prime} .50^{\prime \prime \prime}\). The difference is lefs than \(\frac{1}{3} \div\) part of the whole motion, and feems to arife from the eccentricity of the Moon's orbit, and its inclination to the plane of the ecliptic. By the eccentricity of this orbit, the motion of the nodes is too much accelerated, and on the other hand, by the inclination of the orbit, the motion of the nodes is fomething retarded, and reduc'd to its juft velocity.

\section*{Proposition XXXIII. Problem XIV.}

To find the true motion of the nodes of the Moon. Pl. 12. Fig. 3.

In the time which is as the area \(N T A-N d Z\) (in the preceding Fig.) that motion is as the area \(N A e_{\text {, }}\) and is thence giv'n. But becaufe the calculus is too difficult it will be better to ufe the following conftruction of the problem. About the centre \(C\), with any interval \(C D\), defrribe the circle \(B E F D\), produce \(D C\) to \(A\), fo as \(A B\) may be to \(A C\), as the mean motion to half the mean true motion when the nodes are in their quadratures (that is, as \(19^{\circ} \cdot 18^{\prime} \cdot 1^{\prime \prime} \cdot 23^{\prime \prime \prime}\). to \(19^{\circ}\). \(49^{\prime} \cdot 3^{\prime \prime} \cdot 55^{\prime \prime \prime}\). and therefore \(B C\) to \(A C\), as the difference of thofe motions \(0^{\circ} \cdot 3 \mathrm{I}^{\prime} \cdot 2^{\prime \prime} \cdot 32^{\prime \prime \prime}\). to the latter motion \(19^{\circ} \cdot 49^{\prime} \cdot 3^{\prime \prime} \cdot 55^{\prime \prime}\). that is, as I to \(38^{\frac{3}{8^{2}} \text {) }}\). Then through the point \(D\), draw the indefinite line \(G g\), touching the circle in \(D\); and if we take the angle \(B C E\), or \(B C F\), equal to the double diftance of the Sun from the place of the node, as found by the mean motion; and drawing \(A E\) or \(A F\), cutting the perpendicular \(D G\) in \(G\), we take another angle which fhall be to the whole motion of the node, in the interval between its fyzygies (that is to \(9^{\circ} .11^{\prime} .3^{\prime \prime}\).) as the tangent \(D G\) to the whole circumference of the circle \(B E D\); and add this laft angle (for which the angle \(D A G\) may be us'd) to the mean motion of the nodes, while they are paffing from the quadratures to the fy zygies, and fubtract it from their mean motion, while they are paffing from the fyzygies to the quadratures; we hall have their true motion. For the true motion fo found will nearly agree with the true motion which comes out fromafluming the time as the area \(N T A\) \(N d Z\), and the motion of the node as the area \(N A e\), putations will find. And this is the femi-menftrual equation of the motion of the nodes. But there is alpo a menftrual equation, but which is by no means neceffary for finding of the Moon's latitude. For fine the variation of the inclination of the Moon's orbit to the plane of the ecliptic is liable to a twofold inequalivy : the one femi-menftrual, the other menftrual : the menftrual inequality of this variation, and the menftrual equation of the nodes, fo moderate and correct each other, that in computing the latitude of the Moon both may be neglected.

Cor. From this and the preceding prop. it appears that the nodes are quiefcent in their fyzygies, but regreffive in their quadratures; by an hourly motion of \(16^{\prime \prime} \cdot 19^{\prime \prime \prime} \cdot 26^{\mathrm{iv}}\). And that the equation of the motion of the nodes in the octants is \(\mathrm{r}^{\circ} \cdot 30^{\circ}\). all which exactly agree with the phenomena of the heavens. conumite

\section*{Scholium.}

Mr. Machin Aftron. Prof. Grefh. and Dr. Henry Pemberton Separately found out the motion of the nodes by a different method. Mention has been made of this method in another place. Their feveral papers, both of which I have feen, contained two propositions, and exactly agreed with each other in both of them. Mr. Machin's paper coming firft to my hands, I fall here infers it.
\(f\) the motion of the Moon's nodes. Proposition I. mean motion of the Sun from the node, is lefined by a gcometric mean proportional, beiween the mean motion of the Sun, and that mean motion with which the Sun reced's with the greateft fwiftnefs from the node in the quadratures.
Let T (Pl. 13. Fig. 1.) be the Earth's place; \(\checkmark n\) the line of the Moon's nodes at any given time, \(K T M\) a perpendicular thereto, \(T A\) a rigtt line revolving about the centre with the fame angular velocity with which the Sun and the node recede from one another, in fuch fort that the angle between the quiefcent right line \(N n\), and the revolving line \(T A\), may - be always equal to the diftance of j he places of the "Sun and node. Now if any right line TK be divi" ded into parts, \(T S\) and \(S K\), and thofe parts be taken " as the mean horary motion of the Sun to the mean " horary motion of the node in the quadratures, and " there be taken the righe line \(T H\), a mean proportio" nal between the part TS and the whole TK, this "right line will be proportional to the Sun's mean mo" tion from the node.
"For let there be defcribed the circle \(N K n M\) from " the centre \(T\) and with the radius \(T K\), and about the " fame centre, with the femi-axes \(T H\) and \(T N\), let there "be defrribed an ellipfis \(N H n L\). And in the time in " which the Sun recedes from the node through the are " \(N a\), if there be drawn the right line \(T b a\), the area of " the fectori \(N T_{a}\) will be the exponent of the fum of "the motions of the Sun and node in the fame time. "Ler therefore the extremely fmall arc \(a A\) be that " which the right line \(T^{\circ} b a\), revolving according to the "abovefaid law, will uniformly defribe in a given parVol. II.

U ticle
" ticle of time, and the extremely fmall fector \(T A a\) will
" be as the fum of the velocities with which the Sun
" 6 and node are carried two different ways in that time.
" Now the Sun's velocity is almoft uniform, its inequa-
" lity being fo fmall as farcely to produce the leaftin-
" equality in the mean motion of the nodes. The other
se part of this fum, namely the mean quantity of the ve-
" locity of the node, is increafed in the recefs from the
" fyzygies in a duplicate ratio of the fine of its diftance
"from the Sun (by corol. prop. 3 I. of this book) and
" being greateft in its quadratures with the Sun in \(K\),
"" is in the fame ratio to the Sun's velocity as \(S K\) to \(T S\),
" that is, as (the difference of the fquares of \(T K\) and
" \(T H\), or) the reCtangle \(K H M\) to \(T H^{2}\). But the
" ellipfis NBH divides the fector \(A T a\), the exponent
" of the fums of thefe two velocities, into two parts
" \(A B b a\) and \(B T b\), proportional to the velocitics. For
" produce \(B T\) to the circle in \(\beta\), and from the point
" \(B\) let fall upon the greater axis the perpendicular \(B G\),
" which being produced both ways may meet the circle
" in the points \(F\) and \(f\); and becaufe the face \(A B b a\)
" is to the fector \(T B b\) as the rectangle \(A B \beta\) to \(B T^{*}\),
" (that rectangle being equal to the difference of the
" fquares of \(T A\) and \(T B\), becaufe the right line \(A \beta\)
" is equally cut in \(T\), and unequally in \(B\);) therefore
" when the face \(A B b a\) is the greateft of all in \(K\),
" this ratio will be the fame as the ratio of the rectangle
" \(K H M\) to \(H T^{2}\). But the greateft mean velocity of
" the node was fhewn above to be in that very ratio to
" the velocity of the Sun; and therefore in the quadra-
" tures the fector \(A T a\) is divided into parts proportio-
" nal to the velocities. And becaufe the rectangle \(K H M\)
"، is to \(H T^{2}\), as \(F B f\) to \(B G^{2}\), and the reCtangle \(A B \beta\)
" is equal to the rectangle \(F B f\); therefore the little a-
"rea \(A B b_{a}\), where it is greateft, is to the remaining
" fector \(T B b\), as the rectangle \(A B \beta\) to \(B G{ }^{\text {. }}\). But the
" ratio of thefe little areas always was as the rectangle

Eook III. of Natural Pbilofophy: 291
" \(A B \beta\) to \(B T^{2}\), and therefore the little area \(A B b a\) in
" the place \(A\) is lefs than its correfpondent little area in
" the quadratures, in the duplicate ratio of \(B G\) to \(B T\),
"6 that is, in the duplicate ratio of the fine of the Sun's
" diftance from the node. And therefore the fum of all
" the little areas \(A B b a\), to wit, the fpace \(A B N\) will
" be as the motion of the node in the time in which " the Sun hath been going over the arc \(N A\) fince he "deft the node. And the remaining fpace, namely the " elliptic fector \(N T B\), will be as the Sun's mean moti" on in the fame time. And becaufe the mean annual " motion of the node is that motion which it performs yuut " in the time that the Sun completes one period of its "conrfe, the mean motion of the node from the Sun "s will be to the mean motion of the Sun it felf, as the " area of the circle to the area of the ellipfis; that is as *" the right line \(T K\) to the right line \(T H\), which is a "comean proportional between \(T K\) and \(T S\); or which " mes to the fame, as the mean proportional \(T H\) to the "r right line \(T S\).

\section*{Proposition II.}

The mean motion of the Moon's nodes being given, to find their true motion.
" Let the angle \(A\) be the diftance of the Sun from
"t the mean place of the node, or the Sun's mean motion
" from the node. Then if we take the angle \(B_{B}\), whofe
"tangent is to the tangent of the angle \(A\), as \(T H\) to
\({ }^{\text {rc }} T K\), that is, in the fubduplicate ratio of the mean ho-
" rary motion of the Sun to the mean horary motion
" of the Sun from the node, when the node is in the
"quadrature, that angle \(B\) will be the diftance of the
" Sun from the node's true place. For join \(F T\), and by,
" the demonftration of the laft proportion, the angle
* \(F T N\) will be the diftance of the Sua from the mean U 2
" place
" place of the node, and the angle \(A T N\) the diftance
" from the true place, and the tangents of there angles " are between themselves as \(T K\) to \(T H\).
" Cor. Hence the angle \(F T A\) is the equation of " the Moon's nodes, and the fine of this angle where " it is greateft in the octants, is to the radius as \(K H\) " to \(T K-\mid-T H\). But the fine of this equation in a" ny other place \(A\) is to the greareft fine, as the fine " of the fums of the angles \(F T N+A T N\) to the radius; " that is, nearly as the fine of double the diftance of " the Sun from the mean place of the node (namely. " \(2 F T N\)) to the radius.

\section*{Scholium.}
"If the mean horary motion of the nodes in the qua"dratures be \(16^{\prime \prime} .16^{\prime \prime \prime} \cdot 37^{\text {iv }} \cdot 42^{\text {v }}\). that is in a whole "sidereal year \(39^{\circ} \cdot 38^{\prime} \cdot 7^{\prime \prime}\). \(50^{\prime \prime \prime}\). TH will be to " \(T K\) in the fub-duplicate ratio of the number " 9,0827646 to the number 10,827646 , that is, as \({ }^{6}\) 18, 6524761 to 19,6524761 . And therefore \(T H\) " is to \(H K\) as 18,6524761 to 1 , that is, as the moti" on of the Sun in a fidereal year to the mean motion " 6 of the node \(19^{\circ} .18^{\prime} \cdot 1^{\prime \prime} .23^{\frac{3}{\prime} "}\).
" But if the mean motion of the Moon's nodes in " 20 Julian years is \(386^{\circ} .50^{\prime} .15\) ". as is collected from " the obfervations made ufe of in the theory of the " Moon, the mean motion of the nodes in one fidereal " year will be \(1 y^{\circ} \cdot 20^{\prime} \cdot 3 \mathrm{I}^{\prime \prime} .58^{\prime \prime \prime}\). And \(T H_{\text {! will be }}\) "to \(H K\) as \(360^{\circ}\). to \(19^{\circ} \cdot 20^{\prime} \cdot 31^{\prime \prime} .58^{\prime \prime \prime}\). that is, "' as 18,61214 to 1 , and from hence the mean horary " motion of the nodes in the quadratures will come out " \(16^{\prime \prime}, 18^{\prime \prime \prime}, 48^{\mathrm{ir}}\). And the greateft equation of the \(\mathbb{\$}\) nodes in the octants will be \(\underline{I}^{\circ} 29^{\prime} \cdot 57^{\prime \prime}\).

\section*{Proposition XXXIV. Problem XV.}

To find the horary variation of the inclination of the Moon's orbit to the plane of the ecliptic.

Let \(A\) and \(a\), (Pl. 13. Fig. 2.) reprefent the fyzygives; \(O\) and \(g\) the quadratures; \(N\) and \(n\) the nodes; \(P\) the place of the Moon in its orbit; \(p\) the orthographis projection of that place upon the plane of the ecliptic; and \(m T l\) the momentaneous motion of the nodes as above. If upon Tm we let fall the perpendicular \(P G\), and joining \(p G\) we produce it till it meet \(T l\) in \(g\), and join alfo \(P g\); the angle \(P G p\) will be the inclination of the Moon's orbit to the plane of the ecliptic when the Moon is in \(P\); and the angle \(P g P\) will be the inclination of the fame after a fall moment of time is elaps'd; and therefore the angle \(G P g\) will be the momentancous variation of the inclination. But this angle \(G P g\) is to the angle \(G T g\), as \(T G\) to \(P G\) and \(P p\) to \(P G\) conjunctly. And therefore if for the moment of time we affume an hour; fince the angle \(\boldsymbol{G T g}\) (by prop. 30 .) is to the angle \(33^{\prime \prime} \cdot 10^{\prime \prime \prime} \cdot 33^{\mathrm{iv} .}\) as \(I T\) \(\times P G \times A Z\), to \(A T^{3}\), the angle \(G P g\) (or the horary variation of the inclination) will be to the angle \(33^{\prime \prime}\). \(10^{\prime \prime \prime}\) : \(33^{\mathrm{iv} .}\) as \(I T \times A Z \times T G \times \frac{P P}{P G}\) to \(A T^{3}\). Q. E. I.

And thus it would be if the Moon was uniformly revolved in a circular orbit. But if the orbit is elliptical, the mean motion of the nodes will be diminifh'd in proportion of the leffer axis to the greater, as we have Shewn above. And the variation of the inclination will be alfo diminifh'd in the fame proportion.

Cor. i. Upon \(N n\) erect the perpendicular TF, and let \(p M\) be the horary motion of the Moon in the plane
\(\mathrm{J}_{3}\)
-f \(p K, M k\), and produce them till they meet \(T F\) in \(H\) and \(b\); then \(I T\) will be to \(A T\), as \(K k\) to \(M p\); and \(T G\) to \(H P\) as \(T Z\) to \(A T\); and therefore \(I T \times T G\) will be equal to \(\frac{K k \times \frac{H_{p} \times T Z}{M_{p}} \text {, that is, equal to the }}{}\) area \(H_{P} M b\) multiplied into the ratio \(\frac{T Z}{M_{p}}\) : and there⿻ fore the horary variation of the inclination will be to \(33^{\prime \prime \prime} \cdot 10^{\prime \prime \prime} \cdot 33^{\text {iv. }}\) as the area \(H p M b\) multiply'd into \(A Z \times \frac{T Z}{M P} \times \frac{P p}{P G}\) to \(A T^{3}\).

Cor. 2. And therefore, if the Earth and nodes were after every hour drawn back from their new, and inretatathifo ftantly? reftor'd to their old places, fo as their fituation might continue given fort a whole periodic month together; the whole variation of the inclination during that month would be to \(33^{\prime \prime} .10^{\prime \prime \prime} .33^{\mathrm{ir}}\), as the agg:cgate of all the areas \(H p M h\), generated in the time of one. revolution of the point \(p\), (with due regard in fumming. to their proper figns -1 and -) multiply'd into \(A Z\) \(\times T Z \times \frac{P p}{P G}\) to \(M P \times A T^{3}\), that is, as the whole cire cle \(Q A q\) a multiply'd into \(A Z \times T Z \times \frac{P p}{P G}\) to \(M p \times\) \(' A T^{3}\), that is, as the circumference \(O A q\) a multiply'd into \(A Z \times T Z \times \frac{P P}{P G}\) to \(2 M P \times A T^{2}\).

Cor.3. And therefore, in a giv'n pofition of the nodes, the mean horary variation, from which, if \(u\) niformly continu'd through the whole month, that menAtrual ? variation might be generated, is to \(33^{\prime \prime}\). \(10^{\prime \prime \prime \prime}\).
 so \(P G \times 4 A T\), that is (becaufe \(P P\) is to \(P G\), as the fine

Book III. of Natural Philofophy: 295
fine of the aforefaid inclination to the radius; and cutcdicita \(\frac{A Z \times T Z}{\frac{1}{2} T}\) to \(4 A T\), as the fine of double the angle \(A T_{n}\) to four times the radius) as the fine of the fame inclination multiply'd into the fine of double the diftance of the nodes from the Sun, to four times the fquare of the radius.

Cor. 4. Seeing the horary variation of the inclination, when the nodes are in the quadratures, is (by this prop.) to the angle \(33^{\prime \prime} \cdot 10^{\prime \prime \prime} \cdot 33^{\mathrm{iv}}\), as \(I T \times A Z \times T G \times\) \(\frac{P P}{P G}\) to \(A T^{3}\), that is, as \(\frac{I T \times T G}{\frac{1}{2} A T} \times \frac{P p}{P G}\), to \(2 A T\), that is, as the fine of double the diftance of the Moon from the quadratures multiply'd into \(\frac{P P}{P G}\) to twice the radius: the fum of all the horary variations during the time that the Moon, in this fituation of the nodes, paffes from the quadrature to the fyzygy (that is in the fpace of \({ }^{1} 77 \frac{1}{6}\) hours) will be to the fum of as many angles \(33^{\prime \prime} .10^{\prime \prime \prime} .33^{\mathrm{iv}}\). or \(5878^{\prime \prime}\), as the fum of all the fines of double the diftance of the Moon from the quadratures multiply'd into \(\frac{P p}{P G}\), to the fum of as many diameters; that is, as the diameter multiplied into \(\frac{P P}{P G}\) to the circumference; that is, if the inclination be \(5^{\circ}\). \(1^{\prime}\), as \(7 \times \frac{887}{80}-\) to 22 , or as 278 to 10000 . And therefore the whole variation, compos'd out of the fum of all the horary variations in the forefaid time, is \(1 \sigma_{3}^{\prime \prime \prime}\). or \(2^{\prime} .43^{\prime \prime}\).

\section*{Proposition XXXV. Problem XVI.}

To a given time to find the inclination of the Moon's orbit to the plane of the ecliptic.

Let \(A D\) (Pl. 14. Fig. 1.) be the fine of the greatert inclination, and \(A B\) the fine of the leaft. Bifect \(B D\) in \(C\); and round the centre \(C\), with the interval \(B C\), defribe the circle \(B G D\). In \(A C\) take \(C E\) in the fame proportion to \(E B\) as \(E B\) to twice \(B A\). And if to the time giv'n we fet off the angle \(A E G\) equal to double the diftance of the nodes from the quadratures, and upon \(A D\) let fall the perpendicular \(G H ; A H\) will be the fine of the inclination requir'd.

For \(G E^{2}\) is equal to \(G H^{2}+H E^{2}=B H D-\) \(H E^{2}=H B D+H E^{2}-B H^{2}=H B D-B E^{2}\) \(-2 B H \times B E=B E^{2}-1-2 E C \times B H=2 E C \times A B\) \(\frac{1}{1} 2 E C \times B H=2 E C \times A H\). Wherefore fince \(2 E C\) is giv'n, \(G E^{2}\) will be as \(A H\). Now let \(A E g\) reprefent double the diftance of the nodes from the quadratures, in a given moment of time after, and the arc \(G g\), on account of the giv'n angle \(G E g\), will beas the diltance \(G E\). But \(H b\) is to \(G g\), as \(G H\) to \(G C\), and therefore \(H b\) is as the rectangle \(G H \times G g\), or \(G H \times G E\), that is, as \(\frac{G H}{G E} \times G E^{2}\) or \(\frac{G H}{G E} \times A H\); that is, as \(A H\) and the fine of the angle \(A E G\) conjunctly. If therefore in any one cafe, \(A H\) be the fine of inclination, it will increafe by the fame increments as the fine of inclination doth, by cor. 3. of the preceding prop. 'and thercfore will always continue equal to that fine. But when the point \(G\) falls upon either point \(B\) or \(D, A H\) is equal to this fine, and therefore remains always equal thereto. O. E.D.

In this demonftration I have fuppos'd, that the angle

\section*{Plak XIII. Vot.II.P. 296.}

89 .

\section*{Book III. of Natural Pbilofopby.}
gle \(\dot{B} E G\) reprefenting double the diftance of the nodes from the quadratures, increafeth uniformly. For I cannot defcend to ev'ry minute circumftance of inequality. Now fuppofe that \(B E G\) is a right angle, and ahora that \(G \bar{g}\) is in this cafe the horary increment of double the diftance of the nodes from the Sun; then by cor. 3. of the laft prop. the horary variation of the inclination in the fame cafe, will be to \(33^{\prime \prime}\). \(10^{\prime \prime \prime \prime} \cdot 33^{\mathrm{iv}}\). as the retangle of \(A H\) the fine of the inclination into the fine of the right angle \(B E G\), double the diftance of the nodes from the Sun, to four times the fquare of the radius; that is, as \(A H\) the fine of the mean inclination to four times the radius, that is, feeing the mean inclination is about \(5^{\circ} .8 \frac{1}{2}\), as its fine 896 to 40000 , the quadruple of the radius, or as 224 to 10000. But the whole variation, correfponding to \(B D\) the difference of the fines, is to this horary variation, as the diameter \(B D\) to the arc \(G g\), that is, conjunctly as the diameter \(B D\) to the femi-circumference \(B G D\), and as the time of 2079 \% hours, in which the node proceeds from the quadratures to the fyzygies, to one hour, that is, as 7 to 11 and \(2079 \frac{7}{7}\) to I. Wherefore compounding all thefe proportions, we fhall have the whole variation \(B D\) to \(33^{\prime \prime}\). \(10^{\prime \prime \prime \prime} .33^{\text {iv. }}\) as \(224 \times\) \(7 \times 2079\) 皆 to 110000 , that is, as 29645 to 1000 ; and from thence that variation \(B D\) will come out \(16^{\prime}\). \(23 \frac{L^{\prime \prime}}{}\).

And this is the greateft variation of the inclination, abifrating from the fituation of the Moon in its orbir. For if the nodes are in the fyzygies, the inclination fuffers no change from the various pofitions of the Moon. But if the nodes are in the quadratures, the inclination is lefs when the Moon is in the fyzygies than when it is in the quadratures, by a difference of 2 : \(43^{\prime \prime}\). as we fhew'd in cor. 4. of the preceding prop. and the whole mean variation \(B D\), diminifh'd by \(I^{\prime}\). 21 \(\frac{1}{2}^{\prime \prime}\). the half of this excefs, becomes \(15^{\prime} \cdot 2^{\prime \prime}\) : when
the Moon is in the quadratures; and increas'd by the fame, becomes \(17^{\prime} .45^{\prime \prime}\). when the Moon is in the Syzygies. If therefore the Moon be in the fyzygies, the whole variation in the paflage of the nodes from the quadratures to the fyzygies will be \(17^{\prime}\). \(45^{\prime \prime}\). And therefore if the inclination be \(5^{\circ} \cdot 17^{\prime} \cdot 20^{\prime \prime}\). when the nodes are in the fyzygies, it will be \(4^{\circ}\). \(59^{\prime} \cdot 35^{\prime \prime}\). when the nodes are in the quadratures and the Moon in the Tyzygies. The truth of all which is confirm'd by obfervations.

Now if the inclination of the orbit fhould be requir'd, when the Moon is in the fyzygies, and the nodes any where between them and the quadratures; let \(A B\) be to \(A D\), as the fine of \(4^{\circ} \cdot 59^{\prime} \cdot 35^{\prime \prime}\). to the fine of \(5^{\circ}\). \(17^{\prime} \cdot 20^{\prime \prime}\). and take the angle \(A E G\), equal to double the diftance of the nodes from the quadratures; and \(A H\) will be the fine of the inclination defir'd. Tothis inclination of the orbit the inclination of the fame is equal, when the Moon is \(90^{\circ}\). diftant from the nodes. In other fituations of the Moon, this menftrual inequality to which the variation of the inclination is obnoxious in the calculus of the Moon's latitude, is balanc'd and in a manner trook off, by the menftrual inequality of the motion of the nodes (as we faid before) and therefore may be neglected in the computation of the faid latitude.

\section*{Scholium.}

By thefe computations of the lunar motions, I was willing to hew that by the theory of gravity the motions of the Moon could be calculated from their phyfical caufes. By the fame theory I moreover found, that the annual equation of the mean motion of the Moon arifes from the various dilatation which the orbit of the Moon fuffers from the action of the Sun, accord-

\section*{Book III. of Natural Philofophy:} 299
necording to cor. \(\sigma\). prop. 66 . book I. The force of this action is greater in the perigeon Sun, and dilates the Moon's orbit; in the apogeon Sun it is lefs, and permits the orbit to be again contracted. The Moon moves flower in the dilated, and fafter in the contract-oum ragide ed orbit; and the annual equation, by which this inequality is regulated, vanifhes in the apogee and perigee of the Sun. In the mean diftance of the Sun from the Earth it arifes to about \(11^{\prime}\). 50'. In other diftances of the Sun, it is proportional to the equation of the Sun's centre, and is added to the mean motion of the Moon, while the Earth is paffing from itsa- suiutiol phelion to its perihelion, and fubducted while the Earth is in the oppofite femicircle. Taking for the radius of the orbis magnus, 1000, and \(16 \frac{1}{8}\) for the Earth's eccentricity, this equation when of the greateft magnitude, by the theory of gravity (comes out \(11^{\prime} .49^{\prime \prime}\). But the suult eccentricity of the Earth feems to be fomething greater, and with the eccentricity this equation will be augmented in the fame proportion. Suppofe the eccentricity \(16 \frac{1}{1} \frac{1}{2}\), and the greateft equation will be \(11^{\prime}\). \(5 \mathrm{I}^{\prime}\).

Further, I found that the apogee and nodes of the Moon move fafter in the perihelion of the Earth, where the force of the Sun's action is greater, than in the aphelion thereof, and that in the reciprocal triplicate proportion of the Earch's diftance from the Sun. And hence arife annual equations of thofe motions proportional to the equation of the Sun's centre. Now the motion of the Sun is in the reciprocal duplicate proportion of the Earth's diftance from the Sun, and the greateft equation of the centre, which this inequality generates, is \(x^{\circ} \cdot 56^{\prime}: 20^{\prime \prime}\). correfponding to the abovemention'd eccentricity of the the Sun \(1 \sigma \frac{1}{2} \frac{1}{2}\). But if the motion of the Sun had been in the reciprocal triplicate proportion of the diffance, this inequality would have generated the greateft equation \(2^{\circ} \cdot 54^{\prime \prime}\),

30". And therefore the greateft equations which the inequalities of the motioris of the Moon's apogee and nodes do generate, are to \(2^{\circ} \cdot 54^{\prime} \cdot 30^{\prime \prime \prime}\). as the mean diurnal motion of the Moon's apogee and the mean diurnal motion of its nodes are to the mean diurnal motion of the Sun. Whence the greateft equation of the mean motion of the apogee comes out \(19^{\prime} .43^{\prime \prime}\). and the greateft equation of the mean motion of the nodes \(9^{\prime}\). \(24^{\prime \prime}\). The former equation is added, and the latter fubducted, while the Earth is paffing from its perihelion to its' aphelion, and contrariwife when the Earth is in the oppofite femicircle.

By the theory of gravity I likewife found, that the action of the Sun upon the Moon is fomething greater when the tranfverfe diameter of the Moon's orbit paffeth through the Sun, than when the fame is perpendicular upon the line which joins the Earth and the Sun: And therefore the Moon's orbit is fomething larger in the former than in the latter cafe. And hence arifes ninother equation of the Moon's mean motion, depending upon the fituation of the Moon's apogee in refpect of the Sun; which is in its greateft quantity, when the Moon's apogee is in the oetants of the Sun, and vanifhes when the apogee arrives at the quadratures or fyzygies. And it is added to the mean motion, while the Moon's apogee is paffing from the quadrature of the Sun to the fyzygy, and fubducted while the apogee is paffing from the fyzygy to the quadrature. This equation, which I thall call the femi-annual, when greateft in the octants of the apogee, arifes to about \(3^{\circ} .45^{\prime \prime}\). fo far as I could collect from the phxnomena. And this is its quantity in the mean diftance of the Sun from the Earth. But it is increafed and diminifhed in the reciprocal triplicate proportion of the Sun's diffance, and therefore is nearly \(3^{\prime} \cdot 34^{\prime \prime}\). when that diftance is greateft, and \(3^{\prime} .5 \sigma^{\prime \prime}\). when leaft. But when the Moon's apogee is without the octants, it becomes Tueta lefss

\section*{Book III. \\ of Natural Pbilofophy.}
left, and is to its greateft quantity, as the fine of double the diftance of the Moon's apogee from the neareft fyzygy, or quadrature to the radius.

By the fame theory of gravity, the action of the Sun upon the Moon is fomething greater, when the line of the Moon's nodes paffes through the Sun, than when it is at right angles with the line which joins the Sun and the Earth. And hence arifes another equation of the Moon's mean motion, which I fall call the fecond femi-annual, and this is greateft when the nodes are in the octants of the Sun, and vanifhes when they are in the fyzygies or quadratures; and in other pofitions of the nodes is proportional to the fine of double the diftance of either node from the neareft syzygy or quadrature. And it is added to the mean motion of the Moon, if the Sun is in antecedentid to the node which is neareft to him, and fubducted if in consequential ; and in the octants, where it is of the greateft magnitude, it arifes to \(47^{\prime \prime}\). in the mean difrance of the Sun from the Earth, as I find from the theory of gravity. In other diftances of the Sun this equation, greateft in the octants of the nodes, is rectprocally as the cube of the Sun's diftance from the Earth, and therefore in the Sun's perigee it comes to about \(49^{\prime \prime}\), and in its apogee to about \(45^{\prime \prime}\).

By the fame theory of gravity, the Moon's apogee goes forward at the greateft rate, when it is either in conjunction with or in oppofition to the Sun, but in its quadratures with the Sun it goes backward. And the eccentricity comes, in the former cafe, to its greateft quantity, in the latter to its leaft, by cor. 7. 8. and 9. prop. 66. book I. And thole inequalities by the corollaries we have nam'd, are very great, and generate the principal, which I call the femi-annual, equation of the apogee. And this femi-annual equation in its greaten quantity comes to about \(12^{\circ}\). \(18^{\prime \prime \prime}\). as near-
ly as I could collect from the phxnomena. Our countryman Horrox was the firft who advanced the theory of the Moon's moving in ant ellipfe about the Earth placed in its lower focus. Dr. Halley improved the notion, by putting the centre of the ellipfe in an epicycle whofe centre is uniformly revolved about the Earth. And from the motion in this epicycle the mentioned inequalities in the progrefs and regrefs of the apogee, and in the quantity of eccentricity do arife. Suppofe the mean diftance of the Moon from the Earth to bedivided into 100000 parts, and let \(T\) (Pl: \(_{1}\) 14. Fig. 2.) reprefent the Earth, and TC the Moon's mean eccentricity of 5505 fuch parts. Produce \(T C\) to \(B\), foas \(C B\) may be the fine of the greateft femi-annual equation \(12^{\circ} \cdot 18^{\prime}\), to the radius \(T C\); and the circle \(B D A\) defcribed about the centre \(C\), with the interval \(C B\), will be the epicycle fpoke. of, in which the centre of the Moon's orbit is placed, and revolved according to the order of the letters \(B D A\). (Set off) the angle \(B C D\) equal to twice the annual argument, or twice the diftance of the Sun's true place from the place of the Moon's apogee once equated, \({ }^{2}\) and CTD will be the femi-annual equation of the Moon's apogee, and TD the eccentricity of its orbit, tending to the place of the apogee now twice equated. But having the Moon's mean motion, the place of its apogee, and its eccentricity, as well as the longer axe of its orbic 200000 ; from there data the true place of the Moon in its orbit, together with its diftance from the Earth, may be determined by the methods commonly known.

In the perihelion of the Earth where the force of the Sun is greareft, the centre of the Moon's orbit moves fafter about the centre \(C\), than in the aphelion, and that in the reciprocal triplicate proportion of the Sun's diftance from the Earth. But becaufe the equation of the Sun's centre is included in the annual argupuent, the centre of the Moon's orbit moves fafter in

Book III. of Natural Philofophy.
its epicycle \(B D A\), in the reciprocal duplicate proportion of the Sun's diftance from the Earth. Therefore that it may move yet fafter in the reciprocal fimple proportion of the diftance; fuppofe that from \(D\) the centre of the orbit a right line \(D E\) is drawn, tending towards the Moon's apogee once equated, that is, pa-t rallel to \(T C\); and (fet off) the angle \(E D F\) equal to the excefs of the forefaid annual argument above the di-oute didio ftance of the Moon's apogee from the Sun's perigee in confequentia; or, which comes to the fame thing, take the angle \(C D F\) equal to the complement of the Sun's true anomaly to \(360^{\circ}\). And let \(D F\) be to \(D C\), as twice the eccentricity of the orbis magnus to the Sun's mean diftance from the Earth and the Sun'smean diurnal motion from the Moon's apogee to the Sun's mean diurnal motion from its own apogee con- propuo junctly, that is, as \(33 \frac{2}{8}\) to 1000 , and \(5 \mathbf{2}^{\prime} .27^{\prime \prime} \cdot 16^{\prime \prime \prime}\). to \(59^{\prime} \cdot 8^{\prime \prime}\). 10"'. conjunctly; or as 3 to 100. And imagine the centre of the Moon's orbit, placed in the point \(F\), to be revolved in an epicycle whofe centre is \(D\), and radius \(D F\), while the point \(D\) moves in the circumference of the circle \(D A B D\). For by this means the centre of the Moon's orbit comes to defcribe a certain curve line, about the centre \(C\), with a velocity which will be almoft reciprocally as the cube of the Sun's diftance from the Earth, as it ought to be.

The calculus of this motion is difficult, but may be render'd more eafy by the following approximation. Affuming as above the Moon's mean diftance from the Earth of 100000 parts, and the eccentricity TC of 550 fuch parts, the line \(C B\) or \(C D\) will be found \(1172 \frac{3}{4}\), and \(D F 35 \frac{1}{3}\) of thole parts. And this line \(D F\) at the diftance \(T C\) fubtends the angle at the Earth, which the removal of the centre of the orbit from the place \(D\) to the place \(F\) generates in the motion of this centre; and double this line \(D F\) in a parallel pofition, at the diffance of the upper focus of the Moon's of the Moon from the Earth this double line \(2 D F\) at the upper focus, in a parallel pofition to the firft line \(D F\), fubtends an angle at the Moon which the faid removal generates in the motion of the Moon, which angle may be therefore called the fecond equation of the Moon's centre. And this equation, in the mean diftance of the Moon from the Earth, is nearly as the fine of the angle which that line \(D F\) contains with the line drawn from the point \(F\) to the Moon, and when in its greateft quantity amounts to \(2^{\prime} .25^{\prime \prime}\). But the angle which the line \(D F\) contains with the line drawn from the point \(F\) to the Moon, is found either by fubtracting the angle \(E D F\) from the mean anomaly of the Moon, or by adding the diftance of the Moon from the Sun, to the diftance of the Moon's apogee from the apogee of the Sun. And as the radius to the fine of the angle thus found, fo is \(2^{\prime} .25^{\prime \prime}\). to the fecond equation of the centre; to be added, if the forementioned fum be lefs than a femicircle, to be fubducted if greater. And from the Moon's place in its orbit thus carrected, its longitude may be found in the fyzygies of the luminaries.

The atmofphere of the Earth to the height of 35 or 40 miles refracts the Sun's light. This refraction fratters and fpreads the light over the Earth's fhadow; and the diffipated light near the limits of the hiadow dilates the fhadow. Upon which accounts, to the diameter of the fhadow, as it comes our by the parallax, I add I or \(1 \frac{1}{3}\) minute in lunar eclipfes.

But the theory of the Moon ought to be examined and proved from the phenomena, firlt in the fyzygies; then in the quadratures; and laft of all in the octants; and whofo pleafes to undertake the work, will find it not amils to affume the following mean motions of the

\section*{Book III. of Natural Philofophy: 305} Sun and Moon, at the royal obfervatory of Greemvich to the laft day of December at noon, anno 1700, O.S. viz. The mean motion of the Sun vs \(20^{\circ} \cdot 43^{\prime} \cdot 40^{\prime \prime}\). and of its apogee \(\Phi 7^{\circ} \cdot 44^{\prime}\). \(30^{\prime \prime \prime}\). the mean motion of the Moon \(=15^{\circ} .21^{\prime} .00^{\prime \prime}\); of its apogee, \(H^{\circ}\). \(20^{\prime} .00^{\prime \prime}\). and of its afcending node, \(\Omega 27^{\circ}\). \(24^{\prime}\). \(20^{\prime \prime}\); and the difference of meridians betwixt the obfervatory at Greenvich and the royal obfervatory at Paris, \(0^{\text {h. }} 9^{\prime}\). \(20^{\prime \prime}\). but the mean motion of the Moon and of its apogee, are not yet obtained with fufficient accuracy.

\section*{Proposition XXXVI. Problem XVII.} To find the force of the Sun to move the Sea.

The Sun's force \(M L\) or \(P T\) to difturb the motions of the Moon, was, (by prop. 25.) in the Moon's quadratures, to the force of gravity with us, as I to 638092,6 . And the force \(T M-L M\), or \(2 P K\) in the Moon's fyzygies, is double that quantity. But defcending to the furface of the Earth, thefe forces are diminimed in proportion of the diftances from the centre of the Earth, that is, in the proportion of \(60 \frac{1}{2}\) to 1 ; and therefore the former force on the Earth's furface is to the force of gravity, as 1 to 38604600 . And by this force the Sea is depreffed in fuch places as are 90 degrees diftant from the Sun. But by the other force which is twice as great, the Sea is rais'd; not only in the places directly under the Sun, but in thofe alfo which are directly oppofed to it. And the fum of thefe forces is to the force of gravity, as I to 32868200. And becaufe the fame force excites the fame motion, whether it depreffes the waters in thofe places which are 90 degrees diftant from the Sun; or raifes them in the places which are directly under, and directly oppofest to the Sun; the forefaid fum will be Yox. II.
the total force of the Sun to difturb the Sea, and will have the fame effect as if the whole was employed in raifing the Sea in the places directly under and directly oppos'd to the Sun, and did not act at all in the places which are 90 degrees removed from the Sun.

And this is the force of the Sun to difturb the Sea in any given place, where the Sun is at the fame time both vertical, and in its mean diftance from the Earth. In other pofitions of the Sun, its force to raife the Sea is as the verfed fine of double its altitude above the horizon of the place directly, and the cube of the diflance from the Earth reciprocally.

Cor. Since the centrifugal force of the parts of the Earth, arifing from the Earth's diurnal motion, which is to the force of gravity as I to 289 , raifes the waters under the equator to a height exceeding that under the poles by 85472 Paris feet, as above in prop. 19. the force of the Sun which we have now fhewed to be to the force of gravity, as I to 12868200 , and therefore is to that centrifugal force as 289 to 12868200 , or as 1 to 44527 , will be able to raife the waters in the places directly under and directly oppos'd to the Sun, to a height exceeding that in the places which are 90 degrees removed from the Sun, only by one Paris foot and \(113 \frac{\mathrm{~T}}{30}\) inches. For this meafure is to the meafure of 85472 feet, as I to 44527 .

\section*{Proposition XXXVII. Problem XVIII. To find the force of the Moon to move the Sea.}

The force of the Moon to move the Sea is to be deduced from its proportion to the force of the Sun, and this proportion is to be collected from the proportion of the motions of the Sea, which are the effects of thofe forces. Before the mouth of the river Avon, three miles below Briftol, the height of the afcent of
the water, in the vernal and autumnal fyzygies of the luminaries, (by the obfervations of Samuel Sturmy) amounts to about 4 s feet, but in the quadratures to 25 only. The former of thofe heights arifes from the fum of the forefaid forces, the latter from their dif-ultuna ference. If therefore S and L are fuppofed to repreFent refpectively the forces of the Sun and Moon, while they are in the equator, as well as in their mean diftances from the Earth, we fhall have L-HS to L-S as 45 to 25 , or as 9 to 5 .

At Plymouth (by the obfervations of Samuel Coleprefs) the tide in its mean height rifes to about 16 feet, and marica in the lpring and autumn the height thereof in the fyzygies may exceed that in the quadratures by more than 7 or 8 feet. Suppofe the greatef difference of thofe heights to be 9 feet, and L-TS will be to L-S; as \(20 \frac{1}{2}\) to \(1 \frac{1}{2}\), or as 41 to 23 ; a proportion thar agrees well enough with the former. But becaufe of the great tide at Brifol, we are rather to depend upon the obfervations of Sturmy, and therefore till we procure fomething that is more certain, we fhall ufe the proportion of 9 to 5 .

But becaufe of the reciprocal motions of the waters; the greateft tides do not happen at the times of the fyzygies of the luminaries, but as we have faid before, are the third in order after the fyzygies; (or reckoning from the fyzygies) follow next after the third appulfe of the Moon to the meridian of the place after the fyzygies; or rather (as Sturmy obferves) are the third after the day of the new or full Moon, or rather nearly after the twelfth hour from the new or full Moon, and therefore fall nearly upon the forty third hour after the new or fullof the Moon. But in this port they fall out about the feventh hour after the appulfe of the Moon to the meridian of the place; and therefore follow next after the appulfe of the Moon to the meridian, when the Moon is diffant from the Sun, or from oppofition X 2
with the Sun by about 18 or 19 degrees in confequentia. So the fummer and winter feafons come not to their height in the folftices themfelves, but when the Sun is advanced beyond the folftices by about aztenth part of its whole courfe, that is, by about 36 or 37 degrees. In like manner the greateft tide is raifed after the appulfe of the Moon to the meridian of the place, when the Moon has paffed by the Sun, or the oppofition thereof, by about a tenth part of the whole motion from one greateft tide to the next following greateft tide. Suppore that diftance about \(18 \frac{1}{2}\) degrees. And the Sun's force in this diftance of the Moon from the fyzygies and quadratures, will be of lefs moment to augment and diminifh that part of the motion of the Sea which proceeds from the motion of the Moon, than in the fyzygies and quadratures themfelves, in the proportion of the radius to the co-fine of double this diftance, or of an angle of 37 degrees, that is, in proportion of 1000000 to 7986355 . And therefore in the preceding analogy, in place of S we mult put \(0,7986355 \mathrm{~S}\). th But further, the force of the Moon in the quadratures muft be diminifhed, on account of its declination from the equator. For the Moon in thofe quadratures, or rather in \(18 \frac{1}{2}\) degrees paft the quadratures, declines from the equator by about \(22^{\circ} .13^{\prime}\). And the force of either luminary to move the Sca is diminiifhed as it declines from the equator, nearly in the duplicate proportion of the co-fine of the declination. And therefore the force of the Moon in thofe quadratures is only \(0,8570327 \mathrm{~L}\); whence we have L-1\(0,7986355 \mathrm{~S}\), to \(0,8570327 \mathrm{~L}-0,7986355 \mathrm{~S}\), as 9 to 5 .
tin tmbuen Further yet, the diameters of the orbit, in which the Moon fhould move, fetting afide the confideration of eccentricity, are one to the other, as 69 to 70 . And therefore the Moon's diftance from the Earth in the fyzygies, is to its diftance in the quadratures, cateris

\section*{Book III. of Natural Pbilofophy:}
paribus, as \(\sigma 9\) to 70 . And irs diftances, when \(18 \frac{1}{2}\) degrees advanced beyond the fyzygies, where the great- a a anc indit eft tide was excited, and when \(18 \frac{1}{2}\) degrees paffed by the quadratures, where the leaft tide was produced, are to its mean diftance as 69,098747 and 69,897345 to \(69 \frac{1}{2}\). But the force of the Moon to move the Sea is in the reciprocal triplicate proportion of its diftance. And therefore its forces, in the greateft and leaift of thofe diftances, are to its force in its mean diftance, as 0,9830427 and 1,017522 to 1 . From whence we have \(1,017522 \mathrm{~L} \times 0,7986355 \mathrm{~S}\) to \(0,9830427 \times\) \(0,8570327 \mathrm{~L}-0,7986355 \mathrm{~S}\) as 9 to 5. And S to \(\mathbf{L}\), as I to \(4,48 \mathrm{I} 5\). Wherefore fince the force of the Sun is to the force of gravity as 1 to 12868200, the Moon's force will be to the force of gravity, as I to 2871400.

Cor. i. Since the waters excited by the Sun's force rife to the height of a foot and \(1 \frac{1}{\frac{1}{3}}\) inches, the Moon's force will raife the fame to the height of 8 feet and \(7 \frac{5}{22}\) inches; and the joint forces of both will raife the fame to the height of \(10 \frac{1}{2}\) feet; and when the Moon is in its perigee, to the height of \(12 \frac{1}{2}\) feet, and more, efpecially when the wind fets the fame way as the tide. And a force of that quantity is abundantly fufficient to excite all the motions of the Sea, and agrees well with the proportion of thofe motions. For in fuch Seas as lye free and orpea from eaft to weft, as in the Pacific Sca, and in thote trat's of the Atlantic and Ethiopic Seas which lye without the tropics, the waters commonly rife to \(6,9,12\), or 15 feet. But in the Pacific Sea, which is of a greater depth as well as of a larger extent, the tides are faid to be greater than in the Atlantic and Etbiopic Seas. For to have a full tide raifed, an extent of Sea from caft to weft is required of no lefs than 90 degrees. In the Ethiopic Sea, the waters rife to a lefs height within the tropics than in the temperate zones, exitio X3 be-
becaufe of the narrownefs of the Sea between Africa and the fouthern parts of America. In the middle of the open Sea the waters cannot rife without falling, together and at the fame time, upon both the eaftern and weftern hoars; when notwithftanding in our natrow Seas, they ought to fall on thole fhores? by alternate turns. Upon which account, there is commonly but a fmall flood and ebb in fuch iflands, as lie far diftant from the continent. On the contrary in tome ports, where to fill and empty the bays alternately; the waters are with great viotence forced in and out through Shallow chanels, the flood and ebb muft be greater than ordinary, as at Plymouth and Chepfowv-Bridge in England, at the mountains of St. Michael, and the town of Abranches in Normandy, and at Cambaia and Pegn in the Eafl-Indies. In thefe places the Sea is hurryed in and out with fuch violence, as fometimes to lay the fhoars under water, fometimes to leave them dry, for many miles. Nor is this force of the influx ande efflux to be broke, till it has raifed and depreffed the waters to 30 , 40 , or 50 feet and above. And a like account is to be given of long and fhallow chanels or ftreights, fuch as the Magellanic ftreights and thole chanels which environ England. The tide in fuch ports and ftreights, by the violence of the influx and efflux, is augmented above meafure. But on fuch fhoars as ly towards the deep and open:Sea, with a fteep defcent, where the waters may freely rife end fall without that precipitation of influx and efflux, the proportion of the tides agrees with the forces of the Sun and Moon.

Cor. 2. Since the Moon's force to move the Sea is to the force of gravity, as 1 to 2871400 , it is evident that this force is far lefs than to appear fenfibly in ftatical or hydroftatical experiments, or even in thofe of pendulums. It is in the tides only that this force fhews it felf by any fenfible effect.

Cor. 3. Becaufe the force of the Moon to move the Sea is to the like force of the Sun as \(4,48 \mathrm{I} 5\) to I; and thofe forces (by cor. 14. prop. 66 . book 1.) are as the denfities of the bodies of the Sun and Moon and the cubes of their apparent diameters conjunctly; the denfity of the Moon will be to the denfity of the Sun as 4,4815 to 1 directly, and the cube of the Moon's diameter to the cube of the Sun's diameter inverfely; that is, (feeing the mean apparent diameters of the Moon and Sun are \(31^{\prime}\). \(16 \frac{1^{\prime \prime}}{\prime \prime}\). and \(32^{\prime}\). \(12^{\prime \prime}\).) as 4891 to 1000 . But the denfity of the Sun was to the denfity of the Earth, as 1000 to 4000 ; and therefore the denfity of the Moon is to the denfity of the Earth as 489 I to 4000 , or as II to 9 . Therefore the body of the Moon is more denfe and more earthly, than the Earth it felf.

Cor. 4. And fince the true diameter of the Moon; (from the obfervations of aftronomers) is to the true diameter of the Earth, as 100 to 365 , the mafs of matter in the Moon will be to the mafs of matter in the Earth as I to 39,788 .

Cor. 5. And the accelerative gravity on the furface of the Moon will be about three times lefs than the accelerative gravity on the furface of the Earth.

Cor. 6 . And the diftance of the Moon's centre from the centre of the Earth will be to the diftance of the Moon's centre from the common centre of gravity of the Earth and Moon, as 40,788 to 39,788 .

Cor. 7. And the mean diftance of the centre of the Moon from the centre of the Earth will be (in the Moon's octants) nearly \(60 \frac{2}{3}\) of the greateft femidiameters of the Earth. For the greateft femidiameter of the Earth was 19658600 Paris feet, and the mean diftance of the centres of the Earth and Moon, confifting of \(60 \frac{2}{3}\) fuch femidiamerers, is equal to 1187379440 feet. And this diftance (by the preceeding cor.) is to the diftance of the Moon's centre
from the common centre of gravity of the Earth and Moon, as 40,788 to 39,788 ; which latter diftance therefore is 1158268534 feet. And fince the Moon, in refpect of the fixt Stars, performs its revolution in \(27^{\text {d }} \cdot 7^{\text {h }} \cdot 43^{4^{\prime}}\). the verfed-fine of that angle which the Moon in a minute of time defcribes is \(\mathbf{1 2 7 5 2 3 4 1 \text { , to }}\) the radius \(1000,000000,000000\). And as the radius is to this verfed-fine, fo are 1158268534 feet to 14, 7706353 feer. The Moon therefore falling towards the Earth, by that force which retains it in its orbit, would in one minute of time defcribe 14,7706353 feet. And if we augment this force in the proportion of \(178 \frac{3}{4} \frac{9}{\circ}\) to \(177 \frac{2}{4} \frac{9}{4}\), we fhall have the total force of gravity at the orbit of the Moon, by cor. prop. 3 . And the Moon falling by this force, in one minute of time would defcribe 14,8538067 feet. And at the 6oth part of the diftance of the Moon from the Earth's centre. That is, at the diftance of 197896573 feet from the centre of the Earth, a body falling by its weight, would, in one fecond of time, likewife delcribe 14,8538067 feer. And therefore at the diftance of 19615800 , which compofe one mean femidiameter of the Earth, a heavy body would defcribe in falling 15,11575 , or 15 feet, I inch and \(4 \frac{1}{1 T}\) lines in the fame time. This will be the defcent of bodies in the latitude of 45 degrees. And by the foregoing table to be found under prop. 20. the defcent in the latitude of Paris will be a little greater by an excefs of about \(\frac{2}{3}\) parts of a line. Therefore by this computation heavy bodies in the latitude of Paris falling in vacho will defcribe is Paris feet, I inch, \(4 \frac{2}{3} \frac{3}{3}\) lines very nearly in one fecond of time. And if the gravity be dimininged by taking away a quantity equal to the centrifugal force arifing in that latitude from the Earth's diurnal motion; heavy bodies falling there will defribe in one fecond of time is feet, 1 inch, and \(1 \frac{1}{2}\) line. And with this velocity heavy bodies

\section*{Book III. of Natural Philofophy. 313}
do really fall in the latitude of Paris, as we have fhewn above in prop. 4. and 19.

Cor. 8. The mean diftance of the centres of the Earth and Moon in the fyzygies of the Moon is equal to \(\sigma 0\) of the greateft femidiameters of the Earth, fubducting only about one \(30^{\text {th }}\) part of a femidiame-1utrayenono ter. And in the Moon's quadratures the mean diftance of the fame centres is \(60 \frac{\%}{6}\) fuch femidiameters of the Earth. For thefe two diftances are to the mean diflance of the Moon in the octants, as \(\sigma_{2}\) and 70 to \(69 \frac{1}{2}\), by prop. 28.

Cor. 9. The mean diftance of the centres of the Earth and Moon in the fyzygies of the Moon is 60 mean femidiameters of the Earth, and a \(10^{\text {th }}\) part of one femidiameter; and in the Moon's quadratures the mean diftance of the fame centres is \(\sigma_{1}\) mean femidiameters of the Earth, fubducting one \(30^{\text {th }}\) part of one femidiameter.

Cor. io. In the Moon's fyzygies its mean horizontal parallax in the latitudes of \(0,30,38,45,52,60,90\) degrecs, is \(57^{\prime} \cdot 20^{\prime \prime} \cdot 57^{\prime} \cdot 16^{\prime \prime} \cdot 57^{\prime} \cdot 14^{\prime \prime} \cdot 57^{\prime} \cdot 12^{\prime \prime} .57^{\prime}\) \(10^{\prime \prime \prime} \cdot 57^{\prime} \cdot 8^{\prime \prime} \cdot 57^{\prime} \cdot 4^{\prime \prime}\). refpectively.
In thefe computations I don't confider the magnetic attraction of the Earth whofe quantity is very Imall and unknown. If this quantity hould ever be found out, and the meafures of degrees upon the meridian, the lengths of ifochronous pendulums in different parallels, the laws of the motions of the Sea, and the Moon's parallax, with the apparent diameters of the Sun and Moon, fhould be more exactly determined from phxnomena; we fhould then be inabled to bring this calculation to 'a greater accuracy.

\section*{Proposition XXXVII. Problem XIX. To find the figure of the Moon's body.}

If the Moon's body were fluid like our Sea, the force of the Earth to raife that fluid, in the neareft and remoteft parts, would be to the force of the Moon, by which our Sea is raifed in the places under and oppofite to the Moon, as the accelerative gravity of the Moon towards the Earth, to the accelerative gravity of the Earth towards the Moon, and the diameter of the Moon to the diameter of the Earth conjunctly, that is, as 39,788 to 1 , and 100 to 365 conjunctly, or as ro8r to 100 . Wherefore, fince our Sea, by the force of the Moon, is raifed to \(8 \frac{3}{5}\) feet; the lunar fluid would be raifed by the force of the Earth to 93 feet. And upon this account, the figure of the Moon would be a fpheroid, whofe greateft diameter produced would pafs through the centre of the Earth, and exceed the diameters perpendicular thereto, by 186 feet. Such a figure therefore the Moon affects, and mult have put on from the beginning. O. E. I,

Cor. Hence it is, that the fame face of the Moon always refpects the Earth; nor can the body of the Moon polfibly reft in any other pofition, but would return always by a libratory motion to this fituation. But thofe librations however muft be exceeding flow, becaufe of the weaknefs of the forces which excite them; fo that the face of the Moon which hould be always obverted to the Earth, may for the reafon affigned in prop. 17. be turned towards the other focus of the Moon's orbit, without being immediately drawn back, and converted again towards the Earth.

\author{
LEM:
}

Book III. of Natural Philofophy:

\section*{Lem MAI.}

If. A PE p (Pl. 14. Fig. 3.) reprefent the Earth uniformly denfe, mark'd with the centre C , the poles \(\mathrm{P}, \mathrm{p}\), and the equator A E; and if about the centre C, with the radius CP, we fuppofe the Sphere Pape to be defcribed, and QR to denote the plane on which a right line, drawn from the centre of the Sun to the centre of the Earth, infifts at right angles, and farther fuppofe, that the feveral particles of the whole exterior Earth Pap APepE, without the beight of the faid fphere, endeavour to recede towards this fide and that fide from the plane QR, every particle by a force proportional to its diftance from that plane; I fay in the firft place, that the whole force and efficacy of all the particles, that are fituate in AE the circle of the equator, and difoofed uniformly without the globe, encompalfing the fame after the manner of a ring to wheel the Earth about its centre, is to the "wibole force and efficacy of' as many particles, in that point A of the equator which is at the greateft diftance from the plane QR, to wheel the Earth about its centre with a like circular motion, as 1 to 2. And that circular motion will be performed about an axis lying in the common fection of the equator and the plane QR.

For let there be defcribed from the centre \(K\), with the diameter \(I L\), the femicircle \(I N L K\). Suppofe the femicircumference \(I N L\) to be divided into innumerable
rable equal parts, and from the feveral parts \(N\) to the diameter \(I L\) let fall the fines \(N M\). Then the fums of the fquares of all the fines \(N M\) will be equal to the fums of the fquares of the fines \(K M\), and both fums together will be equal to the fums of the fquares of as many femidiameters \(K N\); and therefore the fum of the fquares of all the fines \(N M\) will be but half fo great as the fum of the fquares of as many femidiameters \(K N\).

Suppofe now the circumference of the circle \(A E\) to be divided into the like number of little equal parts, and from every fuch part \(F\) a perpendicular \(F G\) to be let fall upon the plane \(O R\), as well as the perpendicu\(\operatorname{lar} A H\) from the point \(A\). Then the force by which the particle \(F\) recedes from the plane \(Q R\), will (by fuppofition) be as that perpendicular \(F G\), and this force multiplied by the diffance \(C G\) will reprefent the power of the particle \(F\) to turn the Earth round its centre. And therefore the power of a particle in the place \(F\), will be to the power of a particle in the place \(A\), as \(F G \times G C\) to \(A H \times H C\); that is, as \(F C^{2}\) to \(A C^{2}\) : and therefore the whole power of all the particles \(F\), in their proper places \(F\), will be to the power of the like number of particles in the place \(A\), as the fum of all the \(F C^{2}\) to the fum of all the \(A C^{2}\), that is, (by what we have demonftrated before) as 1 to 2. Q. E. D.

And becaule the action of thofe particles is exerted in the direction of lines perpendicularly receding from the plane \(Q R\), and that equally from each fide of this plane, they will wheel about the circumference of the circle of the equator, together with the adherent body of the Earth, round an axe, which lies as well in the plane \(Q R\), as in that of the equator.

\section*{Lemmail.}

The fame things fill fuppofed, Ifay in the fe-Todavra cond place, that the total force or power of all the particles fituated every where) about the Jphere to cuto dal al turn the Earth about the faid axe, is to the whole force of the like number of particles, uniformly difpos'd round the whole circumference of the equator AE in the fafbion of a ring, to turn forma the whole Earth about with the like circular. motion, as 2 to 5 . Pl. 14. Fig. 4.

For, let \(I K\) be any leffer circle parallel to the equator \(A E\), and let \(L, l\) be any two equal particles in this circle, fituated without the fphere pape. And if upon the plane \(Q R\), which is at right angles with a radius drawn to the Sun, we let fall the perpendiculars \(L M, \operatorname{lm}\); the total forces by which thefe particles recede from the plane \(Q R\), will be proportional to the. perpendiculars \(L M, l m\). Let the right line \(L l\) be drawn parallel to the plane Pape, and bifect the fame in \(X\); and thro' the point \(X\) draw \(N n\), parallel to the plane \(O R\), and meeting the perpendiculars \(L M, l m\) in \(N\) and \(n\); and upon the plane \(Q R\) let fall the perpendicular \(X Y\). And the contrary forces of the particles \(L\) and \(l\), to wheel about the Earth contrarywife, are as \(L M \times M C\), and \(l m \times m C\), that is, as \(L N\) \(\times M C-N M \times M C\), and \(l n \times m C-n m \times m C\); or \(L N \times M C-N M \times M C\), and \(L N \times m C-N M \times m C^{\prime}\), and \(L N \times M m-N M \times \overline{M C+m C}\), the difference of the two, is the force of both taken together to turn the Earth round. The affirmative part of this difference \(L N \times M m\), or \(2 L N \times N X\), is to \(2 A H x\) \(H C\), the force of two particles of the fame fize fituated \(N M \times \overline{M C}-1-m \bar{C}\), or \(2 X r \times C r\), is to \(2 A H \times H C\), the force of the fame two particles fituated in \(A\), as \(C X^{2}\) to \(A C^{2}\). And therefore the difference of the parts, that is, the force of the two particles \(L\) and \(l\), taken together, to wheel the Earth about, is to the force of two particles, equal to the former and fituated in the place \(A\), to turn in like manner the Earth round, as \(L X^{2}-C X^{2}\) to \(A C^{2}\). But if the circumference \(I K\) of the circle \(I K\) is fuppofed to be dividedinto an infinite number of little equal parts \(L\), all the \(L X^{2}\) will be to the like number of \(I X^{2}\), as 1 to 2 (by lem. 1.) and to the fame number of \(A C^{2}\), as \(I X^{2}\) to \(2 A C^{2}\); and the fame number of \(C X^{2}\), to as many \(A C^{2}\), as \(2 C X^{2}\) to \(2 A C^{2}\). Wherefore the united forces of all the particles in the circumference of the circle \(I K\), are to the joint forces of as many particles in the place \(A\), as \(I X^{2}-2 C X^{2}\) to \(2 A C^{2}\); and therefore (by lem. I.) to the united forces of as many particles in the circumference of the circle \(A E\), as \(I X^{2}-2 C X^{2}\) to \(A C^{2}\).

Now if \(P p\) the diameter of the fphere is conceiv'd to be divided into an infinite number of equal parts, upon which a like number of circles \(I K\) are fuppofed to infift, the matter in the circumference of every circle \(I K\) will be as \(I X^{2}\). And therefore the force of that matter to turn the Earth about will be as \(I X^{2}\) into \(I X^{2}-2 C X^{2}\). And the force of the fame matter, if it was fituated in the circumference of the circle \(A E\), would be as \(I X^{2}\) into \(A C^{2}\). And therefore the force of all the particles of the whole matter, fituared without the fphere in the circumferences of all the circles, is to the force of the like number of particles fituated in the circumference of the greateft circle \(A E\), as all the \(I X^{2}\) into \(I X^{2}-2 C X^{2}\) to as many \(I X^{2}\) into \(A C^{2}\), that is, as all the \(A C^{2}-C X^{2}\). into \(A C^{2}-{ }^{3} C X^{2}\) to as many \(A C^{2}-C X^{2}\) into

\section*{Book III. of Natural Pbilooophy:}
\(A C^{2}\), that is, as all the \(A C^{4}-4 A C^{2} \times C X^{2}-1-3 C X^{4}\) to as many \(A C^{4}-A C^{2} \times C X^{2}\), that is, as the whole fluent quantity whofe fluxion is \(A C^{4}-4 A C^{2} \times\) \(C X^{2}-1-3 C X^{4}\), to the whole fluent quantity whofe fluxion is \(A C^{4}-A C^{2} \times C X^{2}\); and therefore by the method of fluxions, as \(A C^{4} \times C X-\frac{4}{3} A C^{2}\) \(\times C X^{3}-\left(-\frac{3}{3} C X^{5}\right.\) to \(A C^{4} \times C X-\frac{1}{3} A C^{2} \times C X^{3}\); that is, if for \(C X\) we write the whole \(C p\), or \(A C\), as \(\frac{4}{15} A C^{5}\) to \(\frac{2}{3} A C^{5}\), that is, as 2 to 5 . O. E. D.

\section*{Lemmar III.}

The fame things fill fuppofed, I fay in the third place, that the motion of the whole Earth about the axe abovenamed, arifing from the mo-arritanew tions of all the particles, will be to the motion of the forefaid ring about the fame axe, in a proportion compounded of the proportion of the matter in the Earth to the matter in the ring; and the proportion of three Squares of the quadrantal arc of any circle, to two Squares of its diameter, that is, in the proportion of the matter to the matter, and of the number 925275 , to the number 1000000.

For the motion of a cylinder, revolv'd about its quiefcent axe, is to the motion of the infcrib'd fphere revolv'd together with it, as any four equal fquares to three circles infrib'd in three of thofe fquares: And the motion of this cylinder is to the motion of an exceeding thin ring, furrounding both fphere and cylinder in their common contact, as double the matter in the cylinder to triple the matter in the ring: And this motion of the ring, uniformly continued abous
bout the axe of the cylinder, is to the uniform motion of the fame about its own diameter performed in the fame periodic time, as the circumference of a circle to double its diameter.

\section*{H Y PO THESIS II.}

If the other parts of the Earth were (took away, and the remaining ring was carried alone about the San in the orbit of the Earth by the annual motion, while by the diurnal motion it was in the mean time revolved about its own axe, inclined to the plane of the ecliptic by an angle of \(23 \frac{1}{2}\) deares; the motion of the equinoctial points would be the fame, whether the ring were fluid, or whothe it confifted of a hard and rigid matter.

\section*{Proposition XXXIX. Problem XX.}

To find the preceffion of the equinoxes.
The middle horary motion of the Moon's nodes, in a circular orbit when the nodes are in the quadratires, was \(16^{\prime \prime} \cdot 35^{\prime \prime \prime}\). \(16^{\mathrm{iv}} \cdot 36^{\mathrm{v}}\). the half of which \(8^{\prime \prime} .17^{1 \prime \prime} \cdot 38^{\mathrm{iv}} .18^{8}\). (for the reafons above explain'd) is the mean horary motion of the nodes in fuck an orbit, which motion in a whole fidereal year becomes \(20^{\circ}\). \(11^{\prime}\). \(46^{\prime \prime}\). Because therefore the nodes of the Moon in fuch an orbit would be yearly transfer'd \(20^{\circ}\). 11'. \(46^{\prime \prime}\). in aiztecedentia; and if there were more Moons, the motion of the nodes of every one, thy cor. 16 . prop. 66 . book 1.) would be as its periodic time; if upon the furface of the Earth, a Moon was revolv'd in the time of a fidereal day, the annual motion of the nodes of this Moon would be to \(20^{\circ} .11^{\prime} .46^{\prime \prime}\).
 riodic time of our Moon, that is, as 1436 to 39343 . And the fame thing would happen to the nodes of a ring of Moons encompaffing the Earth, whether thefe airundaudc Moons did not mutually touch each the other, or whe-hage ther they were molten and form'd into a continued A tuidida ring, or whether that ring flould become rigid and infexible.
Let us then fuppofe that this ring is in quantity of matter equal to the whole exterior Earth Pap APepE, which lies without the fphere Pape (fee Fig. Lem. 2.) and becaufe this fphere is to that exterior Earth, as \(a C^{2}\) to \(A C^{2}-a C^{2}\), that is, (feeing \(P C\) or \({ }_{a} C\) the leaft femidiameter of the Earth is to \(A C\) the greateft (emidiameter of the fame as 229 to 230) as 52441 to 459 ; if this ring encompars'd the Earth round the equator, and both together were revolv'd about the diameter of the ring, the motion of the ring (by lem. 3.) would be to the motion of the inner fphere, as 459 to \(5244^{1}\) and 1000000 to 925275 conjunctly, that is, as 4590 to 485223 ; and therefore the motion of the ring would be to the fum of the motions of both ring 'and Sphere, as 4590 to 489813 . Wherefore if the ring adheres to the fphere, and communicates its motion to the fphere, by which its nodes or equinoctial points recede : the motion remaining in the ring will be to its former motion, as 4590 to 489813 , upon which account the motion of the equinoctial points will be diminifh'd in the fame proportion. Wherefore the annual motion of the equinoctial points of the body, compofed of both ring and fphere, will be to the motion, \(20^{\circ}\). \(11^{\prime} \cdot 46^{\prime \prime}\). as 1436 to 39343 and 4590 to 489813 conjunctly, that is as 100 to 292369. But the forces by which the nodes of a number of Moons (as we explained above) and therefore by which the equinoctial points of the ring recede (that is the forces 3 IT in Fig. prop. 30) are in the

Several particles as the diftances of thole particles from the plane \(Q R\); and by there forces the particles recede from that plane: and therefore (by lem. 2.) if the matter of the ring was fpread all over the furface of the sphere, after the faction of the figure \(P a p A P \subset p E\), in order to make up that exterior part of the Earth, the total force or power of all the particles to wheel about the Earth round any diameter of the equator, and therefore to move the equinoctial points, would become lets than before, in the proportion of 2 to 5 . Wherefore the annual regrefs of the equinoxes now would be to \(20^{\circ}\). \(11^{\prime} .46^{\prime \prime}\). as 10 to 73092 : that is, would be \(9^{\prime \prime} .56^{\prime \prime \prime} \cdot 50^{\mathrm{iv}}\).

But because the plane of the equator is inclined to that of the ecliptic, this motion is to be diminifh'd in the proportion of the fine 91706, (which is the co-fine of \(23 \frac{1}{2} \mathrm{deg}\).) to the radius 100000 . And the remaining motion will now be \(9^{\prime \prime} \cdot 7^{\prime \prime \prime}\). \(20^{\text {iv. }}\). which is the annual preceffion of the equinoxes, arifing from the force of the Sun.

But the force of the Moon to move the fa was to the force of the Sun nearly as 4,4815 to 1 . And the force of the Moon to move the equinoxes is to that of the Sun in the fame proportion. Whence the annual preceffion of the equinoxes, proceeding from the force of the Moon, comes out \(40^{\prime \prime} .52^{\prime \prime \prime} .52^{\mathrm{iv}}\). and the total annual preceffion, arifing from the united forces of both, will be \(50^{\prime \prime} .00^{\prime \prime \prime} \cdot 12^{\mathrm{iv}}\). the quantity of which motion agrees with the phenomena. For the preceffion of the equinoxes, by aftronomical observations, is about \(50^{\prime \prime}\). yearly.

If the height of the Earth at the equator exceeds its height at the poles by more than \(17 \frac{1}{6}\) miles, the matter thereof will be more rare near the furface, than at the center; and the preceffion of the equinoxes will be augmented by the excels of height, and diminifhed by the greater rarity.

Book III. of Natural Pbilofophy.
And now we have defcribed the fyftem of the Sun, the Earth, Moon and Planets, it remains) that we add fomething about the Comets. purtemel agreemer

\section*{Lemmaiv.}

That the Comets are higher than the Moon, and in the regions of the Planets.

As the Comets were placed by aftronomers above the Moon becaufe they were found to have no diurnal parallax; fo their annual parallax is a convincing proof of their defcending into the regions of the Planets. For all the Comets which move in a direct courfe according to the order of the figns, about the end of their appearance become more than ordinarily flow or retrograde, if the Earth is between them and the Sun: and more than ordinarily fwift, if the Earth is approaching to a heliocentric oppofition with them. Whereas, on the other hand, thofe which move againft the order of the figns, towards the end of their appearance, appear fwifter than they ought to be, if the Earth is between them and the Sun; and flower, and therhaps retrograde, if the Earth is in the other fide of its orbit. And thefe appearances proceed chiefly from the diverfe fituations which the Earth acquires in the courfe of its motion, after the fame manner as it happens to the Planets, which appear fometimes retrograde, fometimes more flowly, and fometimes more fwiftly, progreffive, according as the motion of the Earth falls in with that of the Planet, or is diretted the contrary way. If the Earth move the fame way with the Comet, but, by an angular motion about the Sun, fo much fwifter that right lines drawn from the Earth to the Comet converge towards the parts beyond the Comet; the Comet feen from the Earth becaufe of its flower motion will ap- the Comet, the motion of the Earth being fubducted, the motion of the Comer will at least appear retarded. But if the Earth tends the contrary way to that of the Comer, the motion of the Comet will from thence appear accelerated. And from this apparent acceleration, or retardation, or regreffive motion, the diftance of the Comet may be inferr'd in this manner. Let \(r Q A\), \(\boldsymbol{r} \underline{O B}, \boldsymbol{r} Q C\) (Pl.15. Fig. 1.) be three observed longitudes of the Comet about the time of its frt apparing, and \(\Upsilon Q F\) its lat observed longitude before its difappearing. Draw the right line \(A B C\), whole parts \(A B, B C\), intercepted between the right lines \(Q A\) and \(Q B, Q B\) and \(Q C\), may be one to the other, as the two times between the three firft observations. Produce \(A C\) to \(G\), fo as \(A G\) may be to \(A B\) as the time between the firft and lat observation to the time between the firft and fecond; and join \(Q G\). Now if the Comet did move uniformly in a right line, and the Earth either flood fill, or was likewife carried forwards in a right line by an uniform motion: the angle \(\boldsymbol{r} Q G\) would be the longitude of the Comet at the time of the lat observation. The angle therefore \(F Q G\), which is the difference of the longitude, proceeds from the inequality of the motions of the Comet and the Earth. And this angle, if the Earth and Comet move contraryways, is added to the angle \(r Q G\), and accelerates the apparent motion of the Comet. But if the Comet move the fame way with the Earth, it is fubtracted, and either retards the motion of the Comet, or perhaps renders it retrograde, as we have but now explained. This angle therefore, proceeding chiefly from the motion of the Earth, is juftly to be efteem'd the parallax of the Comet; neglecting, to wit, fame little increment or decrement that may arife from the unequal motion of the Comet in its orbit. And from this parallax we thus deduce the diftance of the Comet.

Let

Let \(S\), (Pl. 15. Fig.2.) reprefent the Sun, acT the orbis magnus, \(a\) the Earth's place in the firft obfervation, \(c\) the place of the Earth in the third obfervation, \(T\) the place of the Earth in the laft obfervation, and \(T r\) a right line drawn to the beginning of Aries. (Set off the angle feparar \(\boldsymbol{r} T V\), equal to the angle \(r Q F\), that is, equal to the longitude of the Comet at the time when the Earth is in \(T\); join \(a c\), and produce it to \(g\), fo as a \(g\) may be to \(a c\), as \(A G\) to \(A C\); and \(g\) will be the place at which the Earth would have arrived in the time of the laft obfervation, if it had continued to move uniformly in the right line ac. Wherefore if we draw \(g \boldsymbol{r}\), parallel to \(T r\), and make the angle \(r g V\), equal to the angle \(\mathbf{r} O G\), this angle \(\mathbf{r} g V\) will be equal to the longitude of the Comet feen from the place \(g\), and the angle \(T V g\) will be the parallax which arifes from the Earth's being transferr'd from the place \(g\) into the place \(T\); and therefore \(V\) will be the place of the Comet in the plane of the ecliptic. And this place \(V\) is commonly lower than the orb of Jupiter.

The fame thing may be deduced from the incurvation of the way of the Comets. For thefe bodies move almoft in great circles, while their velocity is great, but about the end of their courfe, when that part of their apparent motion which arifes from the parallax bears a greater proportion to their whole apparent motion, they commonly deviate from thofe circles, and when the Earth goes to one fide, they deviate to the other. And this deflexion, becaufe of its correfponding with the motion of the carth, muft arife chiefly from the parallax. And the quantity thereof is fo confiderable, as, by my computation, to place the difappearing Comets a good deal lower than Jupiter. Whence it follows that when they approach nearer to us in their perigees and perihelions, they often defcend below the orbs of Mars and the inferior Planets. debajo

\section*{326} Mathematicai Principles Book III.
The near approach of the Comets is further confirmed from the light of their heads. For the light of a celeftial body, illuminated by the Sun and receding to remore parts, is diminithed in the quadruplicate proportion of the diftance; to wit, in one duplicate proportion, on account of the increafe of the diftance from the Sun, and in another duplicate proportion, on account of the decreafe of the apparent diameter. Wherefore if both the quantity of light and the apparent diameter of a Comet are given, its diftance will be alfo given, by taking the diftance of the Comet to the diftance of a Planet, in the direct proportion of their diameters and the reciprocal fubduplicate proportion of their lights. Thus in the Comet of the year 1682, Mr. Flamftead obferved with a telefcope of 16 feet, and meafured with a micrometer, the leaft diameter of its head, \(2^{\prime} .00\). But the nucleus, or ftar in the middle of the head, fcarcely amounted to the tenth part of this meafure ; and therefore its diameter was only 11 I" or \(12^{\prime \prime}\). But in the light and fplendor of its head, it furpals'd that of the Comet in the year 1680. and might be compared with the Stars of the firft or fecond magnitude. Let us fuppofe that Saturn with its ring was about four times more lucid; and becaufe the light of the ring was almoft equal to the light of the globe within, and the apparent diameter of the globe is about \(2 \mathrm{I}^{\prime \prime}\). and therefore the united light of both globe and ring would be equal to the light of a globe whofe diameter is \(30^{\prime \prime}\). it follows that the diftance of the Comet was to the diffance of Saturn, as 1 to \(\sqrt{ } 4\) inverfly and \(12^{\prime \prime}\) to 30 directly; that is, as 24 to 30 , or 4 to 5 . Again the Comet in the month of April 1665 , as Hevelius informs us, excelled almoft all the fixt Stars in fplendor, and even Saturn it felf, as being of a much more vivid colour. For this Comet was more lucid than that other which had appeared about the end of the preceding year and had been compared to the Stars of the firlt magnitude.

Book III. of Natural Philofophy.
The diameter of its head was about 6'. but the nucleus, compared with the Planets by means of a telefcope, was plainly lefs than Jupiter; and fometimes:frameamusto judged lefs, Tometimes judged equal to the globe of Saturn within the ring. Since then the diameters of the heads of the Comets feldom exceed \(8^{\prime}\) or \(12^{\prime}\).vavaments and the diameter of the nucleus or central ftar is but 10 lam cute about a tenth or perhaps fifteenth part of the diame-quiceava ter of the head; it appears that thefe ftars are generally of about the fame apparent magnitude with the Planets. But in regard their light may be often compared with the light of Saturn, yea and fometimes ex-Nvidaderamsan ceeds it; it is evident, that all Comets in their perihelions, muft either be placed below, or not far above Saturn. And they are much miftaken, who remove them almoft as far as the fixt Stars. For if it was fo, the Comets could receive no more light from our Sun, than our Planets do from the fixe Stars.

So far we have gone, without confidering the obfcuration which Comets fuffer from that plenty of thick fmoak, which encompaffeth their heads, and through which the heads always Shew dull, 'as through a cloud. For by how much the more a body is ob-mubec fcured by this frook, by fo much the more near it muft be allowed to come to the Sun, that it may vye with the Planets in the quantity of light which it reflects. Whence it is probable that the Comets defcend far below the orb of Saturn, as we proved before from their parallax. But above all the thing is evinced from their tails, which muft be owing either to the Sun's light reflected by a fmoke arifing from them, and difperfing it felf through the \(x\) ther, or to the light of their own heads. In the former cale, we muft horten the diftance of the Comets, left we be obliged to allow that the fmoak arifing from their heads, is propagated through fuch a vaft extent of fpace and with fuch a yelocity and expanfion, as will feem altogether incre\(\mathrm{Y}_{4}\) dible.
dible. In the latter cafe, the whole light of both head and tail is to be afcribed to the central nucleas. But then if we fuppofe all this light to be united and condens'd within the difc of the nucleus, certainly the nucleus will by far exceed Jupiter it felf in Splendor, efpecially when it emits a very large and lucid tail. If therefore, under a lefs apparent diameter, it reflects more light, it muft be much more illuminated by the Sun, and therefore much nearer to it. And the fame argument will bring down the heads of Comets fometimes within the orb of Venus, viz. when being hid under the Sun's rays, they emit fuch huge and fplendid tails, like beams of fire, as fometimes they do. For if all that light was fuppofed to be gathered together into one Star, it would fometimes exceed not one Venus only, but a great many fuch united into one.
te Laftly, the fame thing is infer'd from the light of the heads, which increafes in the recefs of the Comets from the Earth towards the Sun; and decreafes in their return from the Sun towards the Earth. For fo the Comet of the year 1665 (by the obfervations of Hevelius) from the time that it was firft feen, was always loling of its apparent motion, and therefore had already paffed its perigee ; but yet the fplendor of its head was daily increafing, till being hid under the Sun's rays, the Comet ceas'd to appear. The Comet of the year 1683 (by the obfervations of the fame Hevelius) about the end of \(7 u l y\), when it firft appeared, moved at a very flow rate, advancing only about 40 or 45 minutes in its orb in a day's time. But from that time its diurnal motion was continually upon the increafe, till September 4, when it arofe to about 5 degrees. And therefore in all this interval of time, the Comet was approaching to the Earth. Which is likewife proved from the diameter of its head, meafured with a micrometer. For Auguft 6. Hevelius found it only 6'. 05": including the coma, which Sept. 2. he obferved to be

Book III. . of Natural Pbilofophy.
\(9^{\prime} .07^{\prime \prime}\). and therefore its head appeared far lefs about the beginning, than towards the end of the motion: tho' about Aurique the beginning, becaufe nearer to the Sun, it appeared far more lucid than towards the end, as the fame He velius declares. Wherefore in all this interval of time, on account of its recefs from the Sun, it decreas'd in fplendor, notwithftanding its accefs towards the Earth. The Comet of the year 1618 about the middle of \(D_{e}\) cember, and that of the year 1680, about the end of the fame month, did both move with their greateft velocity, and were therefore then in their perigees. But the greateft fplendor of their heads was feen two weeks. before, when they had juft got clear of the Sun's rays; and the greateft fplendor of their tails, a hittle more cola, early, when yet nearer to the Sun. The head of the 9 nutu-prouto former Comet (according to the obfervations of Cyfatus) December I . appeared greater than the Stars of the firft magnitude, and December 16. (then in the perigee) it was but little diminifhed in magnitude, but in the fplendor and brightnefs of its light, a great deal \(\mathcal{F} a\)-briltanter nuary 7, Kepler bsing uncertain about the head deft off curar obferving. December inie. the head of the later Comet was feen and obferv'd by Mr. Flamftead, when but 9 degrees diftant from the Sun; which is farcely to be done in a Star of the third magnitude. December is and 17. it appeared as a Star of the third magnitude, its luftre being diminifhed by the brightnefs of the clouds near the ferting Sun. December 26 . when it mov'd with the greateft velocity, being almoft in its, perigee, it was lefs than the mouth of Pegaus, a Star of the third magnitude. Fan. 3. it appeared as a Star of the fourth. Fan. 9. as one of the fifth. Fan. 13. it was hid by the fplendor of the Moon then in her increafe. FFa- de clla nuary 25 . it was fcarcely equal to the Stars of the feventh magnitude. If we compare equal intervals of time, on one fide and on the other, from the perigee, we hall find that the head of the Comet, which at both intervals of time, was far, but yet equally, remov'd from the Earth, and Could have therefore hone with equal fplendor, appear'd brighteft on the file of the perigee towards the Sun; and difappeared on the other. Therefore from the great difference of light in the one fituation and in the other, we conclude the great vicinity of the Sun and Comet in the former. For the light of Comets ufes to be regular, and to appear greateft when the heads move faftelt, and are therefore in their perigees; ' excepting in To far as it is increafed by their nearness to the Sun.

Cor. 1. Therefore the Comets flame by the Sun's light, which they reflect.

Cor. 2. From what has been fid, we may likewife underftand, why Comets are fo frequently feen in that hemisphere in which the Sun is, and fo feldom in the other. If they were vifible in the regions far above Saturn, they would appear more frequently in the parts oppofite to the Sun. For fuch as were in thole parts would be nearer to the Earth, whereas the prefence of the Sun mut obscure and hide thole that appear in the hemisphere in which hefis. Yet looking over the hiftory of Comets, I find that four or five times more have been feed in the hemifphere towards the Sun, than in the oppofite hemifphere ; befides, without doubt, not a few, which have been hid by the light of the Sun. For Comets defending into our parts neither emit tails nor are fo well illuminated by the Sun as to difcover themselves to our (naked eyes,) until they are come nearer to us than Jupiter. But the far greater part of that spherical face, which is defcrib'd about the Sun with fo fall an interval, lies on that fide of the Earth which regards the Sun; and the Comets in that greater part are commonly more ftrongly illaminated, as being for the molt part nearer to the Sun.

\section*{Book III. of Natural Pbilofophy.}

Cor. 3. Hence alfo it is evident, that the celeftial fpaces are void of refiffance. For though the Comers aunigut are carried in oblique paths, and fometimes contrary to the courfe of the Planets, yet they move(every way with the greateft freedom, and preferve their motions for an exceeding long time, even where contrary to the courfe of the Planets. I am out in my judgment, if they are not a fort of Planets, revolving in orbits returning into themfelves with a perpetual motion. For as to what fome writers contend, that they are no other than meteors, "led into this opinion by the perpetual changes that happen to their heads, it feems to have no foundation. For the heads of Comets are encompaffed with huge atmofpheres, and the lowermoft parts of thefe atmorpheres muft be the denfeft. And therefore it is in the clouds only, not in the bodies of the Comers themfelves, that thefe changes are feen. Thus the Earth, if it was view'd from the Planets, would, without all doubt, hine by the light of its clouds, and the folid body would fcarcely appear through the furrounding clouds. Thus alfo the belts of Jupiter are taja-zoma form'd in the clouds of that Planer, for they change their pofition one to another, and the folid body of Jupiter is hardly to be feen through them. And much more mult the bodies of Comets be hid under their atmorpheres, which are both deeper and thicker.

\section*{Proposition XL. Theorem XX.}

That the Comets move in fome of the conic fections, having their foci in the center of the Sun; and by radij drawn to the Sun defcribe areas proportional to the times.

This propofition appears from cor. .1. prop. 13. book I. compared with prop. 8. 12. and I3. book 3 .

Cor. i. Hence if Comets are revolv'd in orbits returning into themfelves, thofe orbits will be ellipfes; and their periodic times be to the periodic times of the Planets in the fefquiplicate proportion of their principal axes. And therefore the Comets, which for the moft part of their courfe are higher than the Planets, and upon that account defcribe orbits with greater axes, will require a longer time to finifh their revolutions. Thus if the axe of a Comet's orbit was four times greater than the axe of the orbit of Saturn, the time of the revolution of the Comet would be to the time of the revolution of Saturn, that is, to 30 years, as \(4 \sqrt{ } 4\) (or 8) to 1 , and would therefore be 240 years.

Cor. 2. But their orbits will be io near to parabolas, that parabolas may be us'd for them without fenfible error.

Cor. 3. And therefore by cor. 7. prop. 16. book 1 . the velocity of every Comet will always be to the velocity of any Planer, fuppos'd to be revolv'd at the fame diftance in a circle about the Sun, nearly in the fubduplicate proportion of double the diftance of the Planet from the centre of the Sun, to the diftance of the Comet from the Sun's centre very nearly. Let us fuppofe the radius of the orbis magnus, or the greateft femidiameter of the ellipfe which the Earth defcribes,

Book III. of Natural Pbilofophy:
to confift of 100000000 parts; and then the Earth by its mean diurnal motion will defcribe 1720212 of thofe parts, and \(71675 \frac{1}{2}\) by its horary motion. And therefore the Comet, at the fame mean diftance of the Earth from the Sun, with a velocity which is to the velocity of the Earth as \(\sqrt{ } 2\) to 1 , would by its diutnal motion defrribe 2432747 parts, and for \(364 \frac{1}{2}\) parts by its horary motion. But at greater or lefs diftances both the diurnal and horary motion will be to this diurnal and horary motion in the reciprocal fubduplicate proportion of the diftances, and is therefore given.

Cor. 4. Wherefore, if the latus rectum of the parabola is quadruple of the radius of the orbis magnus, and the fquare of that radius is fuppos'd to confilt of 100000000 parts: the area which the Comet will daily defcribe by a radius drawn to the Sun will be \(1216373 \frac{1}{2}\) parts; and the horary area will be \(50682 \frac{4}{4}\) parts. But if the latus retlum is greater or lefs in any proportion, the diurnal and horary area will be lefs or greater, in the fubduplicate of the fame proportion re: ciprocally.

\section*{Lemma V.}

To find a curve line of the parabolic kind, clayc- os which fhall pafs through any given number of points. Pl. is. Fig. 3.

Let thofe points be \(A, B, C, D, E, F, \& c\). and from the fame to any right line \(H N\), given in pofition, let fall as many perpendiculars \(A H, B I, C K, D L, E M\), FN, \&c.

Cafe i. If \(H I, I K, K L, \& c\). the intervals of the points \(H, I, K, L, M, N, \& c\). are equal, take \(b, 2 b, 3 b\), 46,
\(4 b, s b, \& c\). the firft differences of the perpendiculars \(A H, B I, C K, \& \varepsilon\). their fecond differences \(c, 2 c\), \(3 c, 4 c, \& c\). their third, \(d, 2 d, 3 d, \& c\). that is to fay, fo as \(A H-B I\) may be \(=b, B I-C K=2 b\), \(C K-D L=3 b, D L-E M=4 b,-E M+F N=\) \(s b, \& c\). then \(b-2 b=c, \& c\). and fo on to the left difterence, which is here \(f\). Then erecting any perpendicular \(R S\), which may be confidered as an ordinate of the curve required; in order to find the length of this ordinate, fuppofe the intervals \(H I, I K, K L, L M\), \(\& \mathrm{cc}\). to be units, and let \(A H=a,-H S=p, \frac{2}{2} p\) in-to- \(I S=q, \frac{1}{3} q\) into \(-\mid-S K=r, \frac{1}{4} r\) into \(-\mathcal{S} L=s, \frac{1}{5} s\) into \(-S M=t\); proceeding, to wit, to \(M E\), the aft perpendicular but one, and prefixing negative figs before the terms \(H S, I S, \& c\). which lye from \(S\) towards \(A\); and affirmative figns before the terms \(S K\), \(S L, \& C\). which lie on the other fide of the point \(S\). And observing well the figns, \(R S\) will be \(=a-b p-1-q+\) \(d r\)-e s-1-ft,-1 \&c.

Cafe 2. But if \(H I, I K\), \(\nleftarrow c\). the intervals of the points \(H, I, K, L, \& c\). are unequal, take \(b, 2 b, 3 b, 4 b\), \(; b\), \&c. the Girt differences of the perpendiculars \(A H\), \(B I, C K, \& c\). divided by the intervals between thole perpendiculars; \(c, 2 c, 3 c, 4 c, \& c\). their fecond ifferences divided by the intervals between every two; \(d, 2 d, 3 d, \& c\). their third differences, divided by the interval between every three; \(e, 2 c, \& c\). their fourth differences, divided by the intervals between every four; and fo forth; that is, in fuch manner, that \(b\) may be= \(\frac{A H-B I}{H I}, 26=\frac{B I-C K}{I K}, 3 b=\frac{C K-D L}{K L}, \& c\). then \(c=\frac{b-2 b}{H K}, 2 c=\frac{2 b-3 b}{I L}, 3 c=\frac{3 b-4 b}{K} \frac{4 b}{M}, \& c\). then \(d=\frac{c-2 c}{H L}, 2 d=\frac{2 c-3 c}{I M}\), \&c. And thole differences being found, let \(A H\) be \(=a,-H S=p\),
\(p\) into- \(I S=q, q\) into \(+S K=r, r\) into \(+S L=s\), sinto \(-\mathcal{S} M=t\); proceeding, to wit, to \(M E\), the laft perpendicular but one; and the ordinate \(R S\) will be \(=a-6 p-1-6 q \frac{1}{1} d r-1-e s+f t,+\& c\).

Cor. Hence the areas of all curves may be nearly found. For if fome number of points of the curve to be fquar'd are found, and a parabola be fuppos'd to be drawn through thofe points; the area of this parabola will be nearly the fame with the area of the curvilinear figure propos'd to be fquar'd. But the parabola can be always fquar'd geometrically by methods vulgarly known.

\section*{Lemma VI.}

Certain obferved places of a Comet being given, to find the place of the fame to any intermediate given time.

Let \(H I, I K, K L, L M\) (in the preceding Fig.) reprefent the times between the obfervations; \(H A, I B\), \(K C, L D, M E\), five obferv'd longitudes of the Co met, and \(H S\) the given time between the firft obfervation and the longitude required. Then if a regular curve \(A B C D E\) is fuppos'd to be drawn through the points \(A, B, C, D, E\), and the ordinate \(R S\) is found out by the preceding lemma, \(R S\) will be the longitude required.

After the fame method, from five obferv'd latitudes we may find the latitude to a given time.

If the differences of the obferved longitudes are fmall, fuppofe of 4 or 5 degrees, three or four obfervations will be fufficient to find a new longitude and latitude. But if the differences are greater, as of 10 or 20 degrees, five obfervations ought to be ured.

\section*{Lemma VII.}

Through a given point P, (P1. 1s. Fig. 4.) to drawe a right line B C , whofe parts \(\mathrm{P} \mathrm{B} ,\mathrm{P} \mathrm{C}\), cut off by two right lines \(\mathrm{AB}, \mathrm{AC}\), given in pofition, may be, one to the other, in a given proportion.

From the given point \(P\), fuppofe any right line \(\boldsymbol{P} \boldsymbol{D}\) to be drawn to either of the right lines given as \(A B\), and produce the fame towards \(A C\) the other given right line, as far as \(E\), fo as \(P E\) may be to \(P D\) in the given proportion. Let \(E C\) be parallel to \(A D\). Draw \(C P B\), and \(P C\) will be to \(P B\), as \(P E\) to \(P D\). Q. E. F.

\section*{Lem mavili.}

Let A B C (PI. 16. Fig. I.) be a parabola, having its focus in S . By the chord A C bifected in I (cut off) the fegment ABCI, whofe dia meter is \(I \mu\), and vertex \(\mu\). In \(I \mu\) produced take \(\mu \mathrm{O}\) equal to one balf of \(I \mu\). foin OS , and produce it to \(\xi\), fo as \(\mathrm{S} \xi\) may be equal to \({ }_{2}\) S O. Now, fuppofing a Comet to revolve in the arc CBA, draw \(\xi \mathrm{B}\), cutting A C in E; I Say, the point E will (cut off, from the chord A Cithe fegment A E, nearly proportional to the time.

For, if we join \(E O\), cutting the parabolic arc \(A B C\) in \(Y\), and draw \(\mu X\) touching the fame are in the vertex \(\mu\), and meeting \(E O\) in \(X\), the curvilinear area \(A E X \mu A\)
\(\tau\)

Book III. of Natural Philofophy.
\(A E X \mu A\) will be to the curvilinear area \(A C r_{\mu} A\), as \(A E\) to \(A C\). And therefore fince the triangle \(A S E\) is to the triangle \(A S C\) in the fame proportion, the whole area \(A S E X \mu A\) will be to the whole area \(A S C Y \mu A\), as \(A E\) to \(A C\). But becaufe \(\xi O\) is to \(S O\) as 3 to 1 , and \(E O\) to \(X O\) in the fame proportion, \(S X\) will be parallel to \(E B\) : and therefore joining \(B X\), the triangle \(S E B\) will be equal to the triangle \(X E B\). Wherefore if to the area \(A S E X \mu A\) we add the triangle \(E X B\), and from the fum fubduct the triangle \(S E B\), there will remain the area \(A S B X \mu A\) equal to the area \(A S E X \mu A\), and therefore in proportion to the area \(A S C r_{\mu} A\) as \(A E\) to \(A C\). But the area \(A S B r_{\mu} A\) is nearly equal to the area \(A S B X \mu A\), and this area \(A S B Y_{\mu} A\) is to the area \(A S C r_{\mu} A\), as the time of defcription of the arc \(A B\) to the time of defcription of the whole arc \(A C\). And therefore \(A E\) is to \(A C\) nearly in the proportion of the times. OE.D.

Cor. When the point \(B\) falls upon the vertex \(\mu\) of the parabola, \(A E\) is to \(A C\) accurately in the proportion of the times.

\section*{Scholium.}

If we join \(\mu \xi\) cutting \(A C\) in \(\delta\), and in it take \(\xi n\) in proportion to \(\mu B\), as \(27 M I\) to \(16 M \mu\), and draw \(B n\) : this \(B n\) will cut the chord \(A C\) in the proportion of the times, more accurately than before. But the point \(n\) is to be taken beyond, or on this fide the point \(\xi\), according as the point \(B\) is more or lefs diftant from the principal vertex of the parabola than the point \(\mu\).

\section*{L E M M A IX.}

The right lines \(I \mu\) and \(\mu M\) and the length A IC \(\frac{A I}{4 J^{\prime} \mu}\) are equal among themfelves.

For \(4 S \mu\) is the latus rectum of the parabola belonging to the vertex \(\mu\).

\section*{Lemmad.}

Produce S \(\mu\) to N and P , (Pl. 1 6. Fig.r.) \(\int 0\) as \(\mu \mathrm{N}\) may be one third of \(\mu \mathrm{I}\), and SP may be to SN as \(S \mathrm{~N}\) to \(\mathrm{S} \mu\) : and in the time that a Comet would defcribe the arc \(\mathrm{A} \mu \mathrm{C}\), if it was fuppos'd to move always forwards with the velocity which it bath in a beight equal to SP, it would defribe a length equal to the chord AC.

For if the Comet with the velocity, which it hath in \(\mu\), was in the faid time fuppos'd to move uniformly forwards in the right line which touches the parabola in \(\mu\); the area which it would defcribe by a radius drawn to the point \(S\), would be equal to the parabolic area \(A C S \mu A\). And therefore the face contain'd under the length defcrib'd in the tangent and the length \(S \mu\), would be to the fpace contain'd under the lengths \(A C\) and \(S M\), as the area \(A S C u A\) to the triangle \(A S C\), that is, as \(S N\) to \(S M\). Wherefore \(A C\) is to the length defcrib'd in the tangent, as \(S \mu\) to \(S N\). But fince the velocity of the Comet in the height \(S P\) (by cor. \(\sigma\). prop. 16 . book I.) is to the velocity of the fame
fame in the height \(S \mu\), in the reciprocal fubduplicate proportion of \(S P\) to \(S \mu\), that is, in the proportion of \(S \mu\) to \(S N\); the length deferib'd with this velocity will be to the length in the fame time defcrib'd in the tangent, as \(S \mu\) to \(S N\). Wherefore fince \(A C\), and the length defcrib'd with this new velocity, are in the fame proportion to the length defrrib'd in the tangent, they muft be equal betwixt themfelves. 2 : E.D.

Cor. Therefore a Comet, with that velocity which it hath in the height \(S \mu-1-\frac{2}{3} I \mu\), would, in the fame time, defcribe the chord \(A C\) nearly.

\section*{Lem ma XI.}

If a Comet (void of) all motion was let fall from the height SN , or \(\mathrm{S} \mu-1-\frac{1}{3} \mathrm{I} \mu\), toweards the Sun; and was fill impelld to the Sun by the fame force, uniformly continued, by which it was impell'd at firft; the fame in one balf of that time in which it might defcribe the arc A C in its own orbit, would in defcending defrribe a space equal to the length \(\mathrm{I} \mu\).

For in the fame time that the Comet would require to defcribe the parabolic are \(A C\), it would (by the laft lemma) with that velocity which it hath in the height \(S P\), defcribe the chord \(A C\); and therefore (by cor. 7. prop. 16. book 1.) if it was in the fame time fuppos'd to revolve by the force of its own gravity, in a circle whofe femidiameter was \(S P\), it would defcribe an arc of that circle, the length of which would be to the chord of the parabolic arc \(A C\), in the fubduplicate proportion of 1 to 2 . Wherefore if with that weight, which in the height \(S P\) it hath towards the Sun, is fhould fall from that height towards the Sun, it would Z 2
(by
(by cor. 9. prop. 4. book 1.) in half the fad time describe a lace equal to the fquare of half the fain chord apply'd to quadruple the height \(S P\), that is, it would defcribe the face \(\frac{A I^{2}}{4 S P}\). But fine the weight of the Comet towards the Sun in the height \(S N\), is to the weight of the fame towards the Sun in the height \(S P\), as \(S P\) to \(S \mu\) : the Comet, by the weight which it hath in the height \(S N\), in falling from that height towards the Sun, would in the fame time defribe the face \(\frac{A I^{2}}{4 د^{\prime} \mu}\), that is, a face equal to the length \(I \mu\) or \(\mu M\). Q.E.D.

\section*{Proposition XLI. Problem XXI.}

From three observations given to determine the orbit of a Comet moving in a parabola.

This being a problem of very great difficulty, Itry'd many methods of refolving it; and feveral of thole problems, the compofition whereof I have given in the firs book, tended to this purpose. Butafterwards I contried the following folution, which is tbmething more rimple.

Select three observations diftant one from another by intervals of time nearly equal. But let that interval of time in which the Comet moves more lowly, be formewhat greater than the other; fo, to wit, that the difference of the times may be to the fum of the times, as the fum of the times to about 600 days; or that the point \(E(\) Pt. 16 Fig. 1.) may fall upon \(M\) nearly, and may err therefrom, rather towards \(I\) than towards \(\boldsymbol{A}\). If fuch direct oblervations are not at hand, a new place of the Comet malt be found by lem. \(\sigma\).

Book III. of Natural Pbilofophy. 341
Let S (Pl. 16. Fig. z.) reprefent the Sun; \(T, t\), \(\tau\), three places of the Earth in the orbis magnus; \(T A, t B, \tau C\), three obferv'd longitudes of the Comet; \(V\) the time bet ween the firft obfervation and the fecond; \(W\) the time between the fecond and the third; \(X\) the length, which, in the whole time, \(V-1-W\), the Comet might defcribe with that velocity which it hath in the mean diftance of the Earth from the Sun : which length is to be found by cor. 3. prop. 40. book 3. and t \(V\) a perpendicular upon the chord \(T_{\tau}\). In the mean obferved longitude \(t B\), rake at pleafure the point \(B\), for the place of the Comer a layent in the plane of the ecliptic; and from thence towards dende ulli the Sun \(S\), draw the line \(B E\), which may be to the perpendicular \(t V\), as the content under \(S B\) and \(S t^{2}\) to the cube of the hypotenufe of the right angl'd triangle, caparidad whofe. fides are \(S B\) and the tangent of the latitude of the Comer \(;\) in the fecond obfervation to the radius \(t B\). And through the point \(E\), (by lemma 7.) draw the right line \(A E C\), whofe parts \(A E\) and \(E C\), terminating in the right lines \(T A\) and \(\tau C\), may be, one to the other, as the times \(V\) and \(W\) : then \(A\) and \(C\) will be nearly the places of the Comet in the plane of the ecliptic in the firft and third obfervations, if \(B\) was its place rightly affum'd in the fecond.

Upon \(A C\), bifected in \(I\), erect the perpendicular \(I\). Through \(B\) draw the obfcure tine \(B i\) parallel to \(A C\). Join the obfcure line Si, cutting \(A C\) in \(\lambda\), and compleat the parallelogram \(i I \lambda \mu\). Take \(I \sigma\) equal to \({ }_{3} I \lambda\), and through the Sun \(S\), draw the obfcure line \(\sigma \xi\) equal to \(3 \mathcal{S} \sigma-F^{3} i \lambda\). Then, cancelling the letters \(A, E, C, I\), from the point \(B\) towards the point \(\xi\), draw the new obfcure line \(B E\), which may be to the former \(B E\) in the duplicate proportion of the diffance \(B S\) to the quantity \(S \mu-1-\frac{1}{3} i \lambda\). And through the point \(E\), draw again the right line \(A E C\) by the fame rule as before, that is, fo as its parts \(A E\) and \(E C\) may be one to the other as the times \(V\) and \(W\), betweer Z 3
the

\section*{342} Mathematical Principles Book III.
the obfervations. Thus \(A\) and \(C\) will be the places of the Comet more accurately.

Upon \(A C\), bifected in \(I\), erect the perpendiculars \(A M, C N, I O\), of which \(A M\) and \(C N\) may be the rangents of the latitudes in the firft and third obfervations, to the radij \(T A\) and \(\tau C\). Join \(M N\), cutting IO in \(O\). Draw the rectangular parallelogram iI \(\lambda \mu\), as before. In \(I A\) produc'd, take \(I D\) equal to \(S \mu+1-\frac{2}{3} i \lambda\). Then in \(M N\), towards \(N\), take \(M P\), which may be to the above found length \(X\), in the fubduplicate proportion of the mean diftance of the Earth from the Sun (or of the femidiameter of the orbis magnus) to the diftance \(O D\). If the point \(P\) fall upon the point \(N\); \(A, B\), and \(C\) will be three places of the Comet, through which its orbit is to be defarib'd in the plane of the ecliptic. But if the point \(P\) falls not upon the point \(N\); in the right line \(A C\) take \(C G\) equal to \(N P\), fo as the points \(G\) and \(P\) may lie on the fame fide of the line \(N C\).

By the fame method, as the points \(E, A, C, G\), were found from the affum'd point \(B\), from other points \(b\) and \(\beta\) aflum'd at pleafure, find out the new points \(e, a, c, g\); and \(\varepsilon, \alpha, x, \gamma\). Then through \(G, g\), and \(\gamma\), draw the circumference of a circle \(G g \gamma\), cutting the right line \(\tau C\) in \(Z\) : and \(Z\) will be one place of the Comet in the plane of the eoliptic. And in \(A C\), \(a c, \alpha x\), taking \(A F, a f, \alpha \oplus\) equal refpectively to \(C G\), \(c g, x y\); through the points \(F, f\), and \(\varphi\), draw the circumference of a circle \(F f \varphi\), cutting the right line \(A T\) in \(X\); and the point \(X\) will be another place of the Comet in the plane of the ecliptic. And at the points \(X\) and \(\boldsymbol{Z}\), erecting the tangents of the latitudes of the Comet to the radij \(T X\), and \(\tau Z\), two places of the Comet in its own orbit will be determin'd. Laftly, if (by prop. 19. book 1.) to the focus \(\mathcal{S}\), a parabola is defrib'd paffing through thofe two places, this parabola will be the orbit of the Comet. Q.E.I.

\section*{Book III. of Natural Pbilofophy.}

The demonftration of this conftruction follows from the preceding lemmas: becaufe the right line \(A C\) is cut in \(E\) in the proportion of the times by lem. 7, as it ought to be by lem. 8 : and \(B E\), by lem. 11 , is a portion of the right line \(B S\) or \(B \xi\) in the plane of the ecliptic, intercepted between the arc \(A B C\) and the chord \(A E C\); and \(M P\), (by cor. lem. ro.) is the lengrh of the chord of that are, which the Comet fhould defcribe in its proper orbit between the firft and third obfervation, and therefore is equal to \(M N\), providing \(B\) is a true place of the Comet in the plane of the ecliptic.

But it will be convenient to affume the points \(\mathbb{B}, b, \beta\), not at random, but nearly true. If the angle \(A O t\), at which the projection of the orbit in the plane of the edliptic cuts the right line \(t B\), is rudely known; at
\(\qquad\) 7 that angle with \(B t\) draw the obfcure line \(A C\), which may be to \(\frac{4}{3} T \tau\) in the fubduplicate proportion of \(S O\) to \(S t\). And drawing the right line \(S E B\), fo as its part \(E B\) may be equal to the length \(V t\), the point \(B\) will be determin'd which we are to ufe for the firt time. Then cancelling the right line \(A C\), and drawing a new \(A C\) according to the preceding conftruction, and more-ademal over, finding the length \(M P\); in \(t B\) take the point \(b\), by this rule, that if \(T A\), and \(\tau C\) interfect each other in \(r\), the diftance \(r b\) may be to the diftance \(r B\) in a proportion compounded of the proportion of MP to \(M N\) and the fubduplicate proportion of \(S B\) to \(S b\). And by the fame method you may find the third point \(\beta\), if you pleafe to repeat the operation the third time. But if this method is follow'd, two operations generally will be fufficient. For if the diftance \(B 6\) happens to be very fmall; after the points \(F, f\), and \(G\), \(g\), are found, draw the right lines \(F f\) and \(G g\), and they will cut \(T A\) and \(\tau C\) in the points requir'd \(X\) and \(Z\).

\author{
Example.
}

Let the Comet of the year 1680 be propos'd. The following table hews the motion thereof, as obferv'd by Flamjteat, and calculated afterwards by himefrom his obfervations, and correted by Dr. Halley from the fame obfervations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{1680 Dec. 12} & \multicolumn{2}{|r|}{Time} & \multirow[t]{2}{*}{Sun's Longitude.} & \multicolumn{2}{|l|}{Comet's} \\
\hline & Appar. & ruc. & & Longitude. & Lat. N \\
\hline & h. \(46{ }^{\prime \prime}\) & 4.46. "0 & & v9 6.32.30 & 8.28. \\
\hline 1680 Da.in & \(6.32 \frac{1}{2}\) & 6.36.59 & 11.06 .44 & \(\sim_{0} 5.08 .12\) & 21.42 \\
\hline & 6.12 & 6.17 .52 & 14.09 .26 & 18.49 .23 & 25.23. \\
\hline & 5.14 & 5.20.44 & 16.09 .22 & 28.24.13 & 27.00 .52 \\
\hline 29 & 7.55 & 8.03 .02 & 19.19 .43 & F13.10.41 & 28.09.58 \\
\hline & 8.02 & 8.10.26 & 20.21.09 & 17.38.20 & 28.11 .53 \\
\hline 81 7 an. 5 & 5.51 & 6.01 .38 & 26.22 .18 & r 8.48 .53 & 26.15 \\
\hline & 6.49 & \(7.00 \cdot 53\) & m 0.29 .02 & 18.44 .04 & 24.11 .56 \\
\hline 10 & \(5 \cdot 54\) & 6.06.10 & 1.27 .43 & 20.40.50 & 23.43.52 \\
\hline 13 & 6.56 & 7.08 .55 & 4.33 .20 & \({ }^{25,59.48}\) & 22.17 .28
17.56 .30 \\
\hline 25 & \(7 \cdot 44\) & 7.58.42 & 16.4536 & \(\bigcirc\) 9.35. & 17.56 .30
16.42 .18 \\
\hline b. 3 & 8.07 & 8.21.53 & 21.49 .58 & 13.19 .51 & 16.42.18 \\
\hline & 6.50 & 6.34 .51
7.04 .41 & \(24 \cdot 46.59\)
\(27 \cdot 49.51\) & 15.13 .53
16.59 .06 & 5.2 \\
\hline
\end{tabular}

To thefe you may add fome obfervations of mine.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & A. & \multicolumn{2}{|r|}{Comet's} \\
\hline & Time. & Longitude. & Lat.North. \\
\hline 1681 Feb. 25 & 8.30 & ४ 26:18.35 & \(12 \cdot 46.46^{\circ}\) \\
\hline 27 & 8.15 & 27.04.20 & 22.36.12 \\
\hline Mar. 1 & II. 0 & \(27 \cdot 5^{2} \cdot 42\) & 12.23.40 \\
\hline 2 & 8. 0 & 28.12 .48 & 12.19.38 \\
\hline & 11.30 & 29.18.0 & 12.03 .16 \\
\hline 7
9 & 9.30
8.30 & III. 0.4 .10 & \(11.57-0\)
\(11.45 \cdot 52\) \\
\hline
\end{tabular}

Thefe obfervations were made by a telefcope of 7 feet, with a micrometer and threads plac'd in the focus

Plate XVI.Vot.II. P. 344.

Book III. of Natural Pbilo ophy.
of the telefcope ; by which inftruments we determin'd the pofitions both of the fixt Stars among themfelves and of the Comet in refpect of the fixt Stars. Let A (Pl. 17.) reprefent the Star of the fourth magnitude in the left heel of Perfens, (Bayer's 0) B the following Star of the third magnitude in the left foot (Bayers \(\langle\)) \(C\) a Star of the fixth magnitude (Bayer's \(n\)) in the heel of the fame foot, and \(D, E, F, G, H, I\), talion-faton \(K, L, \bar{M}, N, O, Z, \alpha, \beta, \gamma, \delta\), other fmaller Stars in the fame foot. And let \(p, P, Q, R, S, T, V, X\), reprefent the places of the Comet in the obfervations above fet down; and reckoning the diftance \(A B\) of purto \(80_{1} \frac{7}{2}\) parts, \(A C\) was \(52 \frac{1}{4}\) of thofe parts, \(B C, 58 \frac{5}{6}\); \(A D, 572_{2}^{5} ; B D, 82 \frac{6}{11} ; C D, 23 \frac{2}{3} ; A E, 29 \frac{4}{7}\); \(C E, 57 \frac{1}{2} ; D E, 49 \frac{1}{2} \frac{1}{2} ; A I,{ }^{2} 7_{12}^{\frac{1}{2}} ; B I, 52 \frac{1}{6} ; C I\), \(36_{12}^{\frac{1}{2}} ; D I, 53_{1}^{2} ; A K, 38_{3}^{2} ; B K, 43 ; C K\), \(31 \frac{1}{9}\); FK, 29; FB, 23, FC, \(3 \sigma_{4}^{\frac{T}{7}} ; A H, 18 \frac{5}{7} ; D H, 50 \frac{7}{8} ;\) \(B N, 46 \frac{2}{12} ; C N, 31 \frac{1}{3} ; B L, 45_{12}^{\frac{5}{2}} ; N L, 31 \frac{1}{2}\). HO was to \(H I\) as 7 to \(\sigma\), and produc'd did pafs between the Stars \(D\) and \(E\), fo as the diftance of the Star \(D\) from this right line was \(\frac{1}{6} C D . L M\) was to \(L N\) as 2 to 9 , and produc'd did pafs through the Star \(\boldsymbol{H}\). Thus were the pofitions of the fixt Stars determin'd in refpect of one another.

Mr. Pound has fince oblerved a fecond time the pofitions of thefe fixed Stars amongft themfelves, and collected their longitudes and latitudes according to the following table.
\begin{tabular}{|c|c|c|c|c|c|}
\hline The
fixed
Stars. & Their Longitudes. & \begin{tabular}{l}
Latitude \\
North.
\end{tabular} & & Their Longitudes. & Latitude North. \\
\hline A & ¢ \({ }_{26.41 .50}\) & 12. 8.36 & L & . 34 & \\
\hline B & 28.40.23 & 11.17 .54 & M & 29.18.34 & 12. 7.48 \\
\hline C & 27.58.30 & 12.40 .25 & N & 28.48 .29 & 12.31 .9 \\
\hline E & 26.27.17 & 12.52.7 & 2 & 29.44.48 & 11.57 .13 \\
\hline F & 28.28 .37 & 11.52 .22 & \(\propto\) & 29.52. 3 & 11.55 .48 \\
\hline G & 26.56 .8 & 12. 4.58 & \(\beta\) & III 0.8 .23 & 11.43 .56 \\
\hline H & 27.11.45 & 12.2. 1 & \(\gamma\) & 0.40 .10 & 11.55 .18 \\
\hline I & 27.25 .2
27.42 .7 & 11.53 .11
11.53 .26 & \(\lambda\) & 1. 3.20 & 11.30 .42 \\
\hline
\end{tabular}

The pofitions of the Comet to thefe fix'd Stars were obferv'd to be as follows.

Friday, Feb. 25. O. S. at \(8 \frac{2^{\mathrm{h}}}{}\), P. M. the diftance of the Connet in \(p\) from the Star \(E\), was lefs than \(\frac{1}{13} A E\), and greater than \(\frac{1}{\varsigma} A E\), and therefore nearly equal to \({ }^{3}+A E\); and the angle \(A p E\) was a little obtufe, but almoft right. For from \(A\), letting fall a perpendicu\(\operatorname{lar}\) on \(p E\), the diftance of the Comet from that perpendicular was \(\frac{1}{5} p E\).

The fame night at \(9 \frac{t^{\mathrm{h}}}{}{ }^{\text {h }}\), the diftance of the Comet in \(P\) from the Star \(E\), was greater than \(\frac{1}{4^{\frac{1}{2}}} A E\), and lefs than \(\frac{\mathbf{I}}{5^{\frac{1}{4}}} A E\), and therefore nearly equal to \(\frac{10}{4^{\frac{2}{8}}}\) of \(A E\), or \(\frac{3}{3}, A E\). But the diftance of the Comet from the perpendicular let fall from the \(\operatorname{Star} A\) upon the right line \(P E\), was \(\frac{4}{\frac{4}{4} P E \text {. }}\)

Sunday, Feb. \(277^{8 \frac{1}{4} h}\) P. M. the diftance of the Co: met in \(O\), from the Star \(O\), was equal to the diftance of the Stars \(O\) and \(H\); and the right line \(Q O\) produc'd pafs'd between the Stars \(K\) and \(B\). I could not, by reafon of intervening clouds, determine the pofition of the Star to greater accuracy.

Tuefday, March I. \(1 \mathrm{I}^{\mathrm{h}}\). P. M. the Comet in \(R\), lay exactly in a line between the Stars \(K\) and \(C\), fo as the

Book III. of Natural Pbilofophy:
the part \(C R\) of the right line \(C R K\), was a little greater than \(\frac{1}{3} C K\) and a little lefs than \(\frac{1}{3} C K+\frac{1}{8} C R\), and therefore \(=\frac{1}{3} C K-\frac{1}{15} C R\), or \(\frac{16}{4} \frac{3}{5} C K\).

Wednefday, March 2. \(8^{\mathrm{h}}\). P. M. the diftance of mericoles the Comet in \(S\) from the Star \(C\), was nearly \(\frac{ \pm}{9} F C\); the diftance of the Star \(F\) from the right line \(C S\) produc'd was \(\frac{1}{2+} F C\); and the diffance of the Star \(B\) from the fame right line was five times greater than the diftance of the Star \(F\). And the right line \(N S\) produc'd pafs'd between the Stars \(H\) and \(I\), five or fix times nearer to the Star \(\boldsymbol{H}\) than to the Star \(I\).

Saturday, March \(5.11 \frac{1}{2}\) P. M. when the Comet was in \(T\), the right-line \(M T\) was equal to \(\frac{1}{2} M L\), and the right-line \(L T\) produc'd pafs'd between \(B\) and \(F\), four or five times nearer to \(F\) than to \(B\), cutting off from \(B F\) a fifth or fixth part thereof towards \(F\) : and \(M T\) produc'd pars'd on the out-fide of the fpace \(B F\), towards the \(\operatorname{Star} B\), four times nearer to the \(\operatorname{Star} \boldsymbol{B}\) than to the Stat \(F . \quad M\) was a very fmall Star fcarcely to be feen by the telefcope, but the Star \(L\) was greater, and of about the eighth magnitude.

Monday, March 7. 92 \(\frac{1}{2}\) P. M. The Comet being lumes in \(\bar{V}\), the right line \(V \propto\) produced did pafs between \(B\) and \(F\), cutting off, from \(B F\) towards \(F\), 10 of \(B F\), and was to the right line \(V \beta\) at 5 to 4 . And the diftance of the Comet from the right line \(\alpha \beta\) was \(\frac{1}{2} V \beta\).

Wednefday, March 9. \(8 \frac{1}{2} \mathrm{~h}\) P. M. the Comet being in \(X\), the right line \(\gamma X\) was equal to \(\frac{1}{4} \gamma \delta\), and the perpendicular let fall from the Star \(\delta\) upon the right \(\gamma X\) was \(\frac{2}{5}\) of \(\gamma \delta\).

The fame night at \(\mathbf{1 2}^{\text {h }}\), the Comet being in \(r\), the right line \(\gamma r\) was equal to \(\frac{1}{3}\) of \(\gamma \delta\), or a littele lefs, as perhaps \(1_{1}^{2} \sigma\) of \(\gamma \delta\), and a perpendicular let fall from the Star \(\delta\) on the right line \(\gamma r\) was equal to about \(\frac{1}{6}\) or \(\frac{1}{7} \gamma \delta\). But the Comet being then extremely near the horizon was fcarcely difeernable, and therefore

\section*{348}
its place could not be determined with that certainty as in the foregoing obfervations.

From thee obfervations, by conftrutions of figures and calculations, I deduced the longitudes and latitudes of the Comet: and Mr. Pound by correcting the places of the fixed Stars harh determined more correctly the places of the Comet, which correct places are fer down above. Though my micrometer was none of the beft, yer the efrors in longitude and latitude (as derived from my obfervations) fcarcely exceed one minute. The Comet (according to my obfervations) about the end of its motion, began to decline fenfibly towards the north, from the parallel which it defcrib'd about the end of February.

Now in order to determine the orbit of the Comet out of the obfervations above defrib'd; I feleated thofe three which Flamflead made, Dec. 2 1. Fan. 5. and Fan. 25. From which I found St of 9842,1 parts, and \(V t\) of 455 , fuch as the femidiameter of the orbis magnus contains 10000 . Then for the firft obfervation, affuming \(t B\) of 5657 of thofe parts, I found \(S B 9747, B E\) for the firt time 4i2, \(S \mu 9503, i \lambda\) \(413, B E\) for the fecond time \(42.1, O D 10186\), X 8528,4 ; \(P M 8450, M N 8475, N P 25\). From whence, by the fecond operation, I collected the diftance \(t 65640\). And by this operation, I at laft deduced the diftances \(T X 4775\) and \(\tau Z 11322\). From which limiting the orbit, Ifound its defcending node in \(\Phi_{0}\) and afcending node in \({ }^{6 S} 1^{\circ} 53^{\prime}\); the inclination of its plane to the plane of the ecliprick \(61^{\circ} .20^{\prime} \frac{1}{3}\); the vertex thereof (or the perihelion of the Comet) diflant from the Node \(8^{\circ} .38^{\prime}\), and in \(\chi^{\wedge} 27^{\circ} .43^{\prime}\), with latitude \(7^{\circ}\). \(34^{\prime}\) fouth; its latus reetum 236,8; and the diurnal area delcrib'd by a radius drawn to the Sun 93585 , fuppofing the fquare of the femidiameter of the orbis magnus, 100000000 ; that the Comet in this orbit mov'd directly according to the order of

Book III. of Natural Pbilofophy.
the figns, and on Dec. 8d. \(00^{\text {h }}\). \(04^{\prime}\) P. M. was in the vertex or perihelion of its orbir. All which I determin'd by fcale and compars, and the chords of angies, taken from the table of natural fines, in a pretty bastanh large figure, in which, to wit, the radius of the orbis magnus (confifting of 10000 parts,) was equal to \(16 \frac{1}{3}\) inches of an Englifh Fcot.

Laftly, in order to difcover whether the Comet did firaliment truly move in the orbit fo determin'd, I inveftigated its places in this orbit partly by arithmetical operations, and partly by fale and compals, to the times of fome of the obfervations, as may be feen in the following table.

But afterwards Dr. Halley did determine the orbit to a greater accuracy by an arithmetical calculus, than could be done by linear defcriptions; and retaining the place of the nodes in \(\Phi\) and \(v 1^{\circ} 53^{\prime}\), and the inclination of the plane of the orbit to the ecliptic
 perihelio, Dec. \(8^{\text {d }} .00 .04^{\prime}\) : he found the diftance of the porihelion from the afcending node meafur'd in the Comet's orbit \(9^{\circ} .2^{\prime}\), and the latus rectum of the parabola 2430 parts, fuppofing the mean diftance of the Sun from the Earth to be 100000 parts. And from thefe data, by an accurate arithmetical calculus, he computed the places of the Comet to the times of the obfervations as follows.

True

This Comet alfo appeared in the November before, and at Coburg in Saxony was obferved by Mr. Gottfried Kirch on the \(4^{\text {th }}\) of that Month, on the 6th and \({ }_{1}\) ith \(O . S\); from its pofitions to the neareft fixed Sars obferved with fufficient accuracy, fometimes with a two foot, and fometimes with a ten foot telefcope;

Book III．of Natural Philofophy． 35 I
from the difference of longitudes of Coburg and Lon－ don， \(1 \mathrm{I}^{\circ}\) ，and from the places of the fixed Stars ob－ ferved by Mr．Pound，Dr．Halley has determined the places of the Comet as follows．

Nov．3d． \(17^{\text {h }} .2^{\prime}\) ，apparent time at London，the Co－ met was in \(\Omega 29\) deg． \(51^{\prime}\) ，with 1 deg． \(17^{\prime} \cdot 45^{\prime \prime}\). latitude north．

November 5．15 h． \(58^{\prime \prime}\) the Comer was in \({ }^{\prime \prime} 3^{\circ} .23^{\prime}\) ， with \(I^{\circ}\) ．\(\sigma^{\prime}\) ．north lat．

November 10． \(16^{\mathrm{h}} \cdot 3 \mathrm{I}^{\prime}\) ，the Comet was equally di－ ftant from two Stars in § whichare \(\sigma\) and \(\tau\) in Bayer； but it had not quite touched the right line that joins them，but was very little diftant from it．In Flam－ ftead＇s catalogue this Star \(\sigma\) was then in 拫 \(14^{\circ}\) ． \(15^{\prime}\) ， with I deg． \(4 \mathrm{I}^{\prime}\) ．lat．north nearly，and \(\tau\) in \(\mathbb{R}^{2}\) \(17^{\circ} \cdot 3^{\prime \frac{1}{2}}\) with o．deg． \(34^{\prime}\) ．lat．fouth．And the middle point between thofe Stars was 仅 \(15^{\circ} \cdot 39^{\frac{1}{4}}\) ， with \(0^{\circ}\) ． \(33^{\prime \frac{3}{2}}\) lat．north．Let the diftance of the Comet from that right line be about 10 ＇or 12 ＇；and the difference of the longitude of the Comet and that middle point will be 7 ；and the difference of the latitude nearly， \(7^{\prime} \frac{1}{2}\) ．And thence it follows，that the Comet was in \({ }^{1 / 2} 15^{\circ} \cdot 32^{\prime}\) ，with about \(26^{\prime}\) lat．north．

The firft obfervation from the pofition of the Co－ met with refpect to certain fmall fixed Stars had all the exactnefs that could be defired．The fecond alfo was accurate enough．In the third obfervation，which was the leaft accurate，there might be an error of 6 or 7 minutes，but hardly greater．The longitude of the Comet，as found in the firft and moft accurate obfer－ tion，being computed in the aforefaid parabolic orbit， comes out \(凤 29^{\circ} .30^{\prime} .22^{\prime \prime}\) ，its latitude north \(1^{\circ} .25^{\prime} .7^{\prime \prime}\) ， and its diftance from the Sun 115546 ．

Moreover，Dr．Halley obferving that a remarkable Comet had appeared four times at equal intervals of 575 years，that is，in the Month of September after \(7 u\)－ lius Cafar waskilled，\(A n . C b r\) ． 53 I in the confulate of

352 Mathematical Principles Book III.
Lampadius and Oreffes, An. Cbr. 1106 in the Month of February, and at the end of the year 1680; and that with a long and remarkable tail (except when it was feen after Cefar's death, at which time, by reafon of the inconvenient fituation of the Earth, the tail was not|fo confpicuous:) Yet himfelf to find out an eilipric orbit whofe greater axis fhould be 1382957 parts, the mean diftance of the Earth from the Sun containing 10000 fuch ; in which orbit a Comet might revolve in 575 years. And placing the afcending node in \(G^{5}\) \(2^{\circ}, 2^{\prime}\); the inclination of the plane of the orbit to the plane of the ecliptic in an angle of \(61^{\circ} . \sigma^{\prime} .48^{\prime \prime}\); the peribelion of the Comet in this plane in \(\chi^{\prime} 22^{\circ} .44^{\prime} \cdot 25^{\prime \prime}\); the equal time of the perihelion December \(7^{\mathrm{d}} \cdot 23^{\mathrm{h}} \cdot 9^{\prime}\); the diftance of the perihelion from the afcending node in the plane of the ecliptic \(9^{\circ} .17^{\prime} \cdot 35^{\prime \prime}\); and its conjugate axis \(1848 \mathrm{I}, 2\); he computed the motions of the Comet in this ecliptic orbit. The places of the Comet, as deduced from the obfervations and as arifing from computation made in this orbit, may be feen in the following table.
\begin{tabular}{|c|c|c|c|c|}
\hline True time & Long．obf． & Lat．Nor． obf． & Long．comp． & Lat．curibme \\
\hline d h & － & ＂ & － 1 & \\
\hline Jov． \(3 \cdot 16.47\) & \(\Omega\) 29．51．0 & 1．17．45 & \(\Omega 29 \cdot 51 \cdot 22\) & 1.17 \\
\hline 5．15．37 & 12 3．23．0 & 1． 6.0 & 7R 3．24．32 & 1 \\
\hline 10．16．18 & \(15 \cdot 32\) & 0.27 ． 0 & 15．33． 2 & 0．2！ \\
\hline 16.17 .00 & & & \(\approx 8.16 .45\) & O． 53 \\
\hline 18．21．34 & －．．． & － & －18．52．15 & 1 \\
\hline 20.17 ． 0 & & & －28．10．36 & 1 \\
\hline 23.17 ． 5 & & & m 13．22．42 & 21 \\
\hline Dec．12． \(4 \cdot 46\) & V9 6．32．30 & 8．28．0 & vp 6．31．20 & 8． 21 \\
\hline 21．6．37 & ¢゙15．8．12 & \(21 \cdot 42 \cdot 13\) & N5 5．6．14 & 21 \\
\hline 24．6．18 & 18.49 .23 & 25．23－ 5 & 18．47．30 & 25.2 \\
\hline 26．5．2I & 28．24．13 & \(27 \cdot 0 \cdot 52\) & 28．21．42 & \\
\hline 29．8． 3 & 犬 13.10 .41 & 28． \(9 \cdot 58\) & X 13.11 .14 & 28．161 \\
\hline 30．8．10 & 17．38． 0 & 28．11．53 & 17.38 .27 & 28．1／ \\
\hline Jan． \(5 \cdot 6.1 \frac{1}{2}\) & \(\boldsymbol{r} 8.48 .53\) & 26．15．7 & r 8．48．51 & 26．1ataf \\
\hline 9．7．1 & \(18.44 \cdot 4\) & \(24 \cdot 11 \cdot 56\) & 18.43 .51 & 24．1． \\
\hline 10．6．6 & 20．40．50 & \(23 \cdot 43 \cdot 32\) & \(20.40 \cdot 23\) & 23. \\
\hline 13．7．9 & 25．59．48 & 22．17． 28 & 26．0．8 & 22．14才 \\
\hline 25．7．59 & ४ 9．35． 0 & 17.56 ． 30 & －9．34．11 & \\
\hline 30.8 .22 & 13.19 .51 & \(16.42 \cdot 18\) & 13．18．28 & 16 \\
\hline Feb．2．6． 35 & 15．13．53 & 16．4． 1 & 15．11．59 & 16. \\
\hline 5． \(7 \cdot 4^{\frac{1}{2}}\) & 16．59． 6 & \(15 \cdot 27 \cdot 3\) & 16．59．17 & 15.2 \\
\hline 25．8．41 & 26．18．35 & \(12 \cdot 46 \cdot 46\) & 26．16． 59 & \(12.4{ }^{11}\) \\
\hline Mar． 1.11 .10 & \(27 \cdot 52.42\) & \(12.23 \cdot 40\) & 27．51．47 & 12.2 \\
\hline 5．11．39 & 29．18． & 12．3．16 & 29．20． 11 & 12 \\
\hline 9．8．38 & II 0．43． & \(11 \cdot 45 \cdot 5^{2}\) & II \(0.42 \cdot 43\) & 11.4 \\
\hline
\end{tabular}

To face Page 352
\begin{tabular}{|c|c|}
\hline omp. & Errors in Long. | Lat. \\
\hline 运价icrion " & " \\
\hline cola' 32 N & +0.22-0.13 \\
\hline (6.9 & \(+1.32+0.9\) \\
\hline ch bucimp - 7 y & +1.2-1.53 \\
\hline ; 7 S & -....-... \\
\hline 5. 54 & \\
\hline 3.35 & - - - - - - \\
\hline 7. 0 & \\
\hline 7. 6 N & -1.10+1.6 \\
\hline \(4 \cdot 42\) & -1.58 \(5^{8}+2.29\) \\
\hline 3-35 & -1.53 + 1.30 \\
\hline 2 . 1 & -2.31 +1.9 \\
\hline -. 38 & +0.33 +0.40 \\
\hline 1. 37 & +0.7-0.16 \\
\hline 4. 57 & -0. \(2-0.10\) \\
\hline 2.17 & \(-0.13+0.21\) \\
\hline 3. 25 & -0.27-0.7 \\
\hline 6.32 & \(+0.20-0.56\) \\
\hline 6.6 & -0.49-0.24 \\
\hline - . 5 & -1.23 -2.13 \\
\hline 2. 7 & \(-1.54-1.54\) \\
\hline \(7 \cdot 0\) & \(+0.11-0.3\) \\
\hline 5.22 & \(-1.36-1.24\) \\
\hline 2.28 & \(-0.55-1.12\) \\
\hline 2. 50 & +2.11-0.26 \\
\hline 5.35 & \(-0.21-0.17\) \\
\hline
\end{tabular}

Book III. of Natural Pbilofophy:
The obfervations of this Comet from the beginning to the end agree as perfectly with the motion of the Comet in the orbit juft now defcribed, as the motions of the Planets do with the theories from whence they are calculated, and by this agreement plainly evince that it was one and the lame Comet that appeared all that time ; and alfo that the orbit of that Comet is here rightly defined.
In the foregoing table we have omitred the obfervations of No\% 16, 18, 20 and 23 as not fufficiently accurate. For at thofe times feveral perfons had obferved the Comet. Nov. 17. O. S. Ponibaus and his Companions at \(6^{\mathrm{n}}\) in the morning at Rome (that is \(5^{\mathrm{h}} .1^{\prime}\) at London) by threads directed to the fixt Stars, oblerv'd the Comet in \(\approx 8^{\circ} .30^{\prime}\). with latitude, \(0^{\circ} .40^{\prime}\). fouth. Their obfervations may be feen in a treatife, which Pontheus publifh'd concerning this Comer. Cellius who was prefent, and communicated his obfervations in a Letter to Cafini, faw the Comet at the fame hour in \(\approx 8^{\circ} \cdot 30^{\prime}\). with latitude \(0^{\circ}\). \(30^{\prime}\) fouth. It was likewife feen by Galletius at the fame hour at Avignon (that is at \(\xi^{\text {b }} \cdot 42^{\prime}\). morning at London) in \(\approx 8^{\circ}\). withour latitude. But by the theory the Comet was at that time in \(ニ 8^{\circ} .16^{\prime} .45^{\prime \prime}\). and its latitude was \(0^{\circ} .53^{\prime} \cdot 7^{\prime \prime}\). fouth.

Nov. 18. at \(\sigma^{\mathrm{h}} .30^{\prime}\) in the morning at Rome (that is, at ' \(5^{\mathrm{h}} \cdot 40^{\prime}\) '. at Lon lon) Ponthaus oblerv'd the Comet in \(\bumpeq 13^{\circ} \cdot 30^{\prime}\). with latitude \(1^{\circ}\). \(20^{\prime}\). fouth; and Cellius in \(\sim 13^{\circ}\). \(30^{\prime}\). with latitude \(1^{\circ}\). o0'. fouth. But at \(5^{\text {h }} 30^{\prime}\). in the morning at Avignon Galletius faw it in \(\approx 13^{\circ}\). \(00^{\prime}\). with latitude \(\mathrm{I}^{\circ}\). \(00^{\prime}\) fouth. In the univerfity of La Fleche in France, at \(5^{h}\) in the morning (that is at \(\rho^{\mathrm{b}}\). \(g^{\prime}\). at London) it was feen by \(P\). Ango, in the middle between two fmall Stars, one of which is the middle of the three which lye in a right-line in the fouthern hand of Virgo, Bayers \(\psi\), and the other is the outmoft of the wing, Bayers \(\theta\). Whence the

\footnotetext{
\(\underset{\substack{\text { lomal } \\-\rightarrow \text { comu }}}{ }\) ala a Comce
}

Comet wasthen in \(\simeq 12^{\circ} .46^{\prime}\). with latitude \(50^{\prime}\) fouth. And I was informed by Dr. Halley that on the fame day, at Bofton in New-Ewgland, in the latitude of \(42 \frac{1}{2}\) deg. at \(5^{\mathrm{h}}\) in the morning, (that is, at \(9^{\text {h }} .44^{\prime}\) in the morning at London,) the Comet was feen near \(\bumpeq 14^{\circ}\), with latitude \(1^{\circ} .30^{\prime}\) fouth.

Nov. 19. at \(4^{\text {h }} \frac{1}{2}\) at Cambridge, the Comer (by the obfervation of a young man) was diftanc from Spica联 about \({ }^{20}\) towards the north-weft. Now the fpike was at that time in \(\bumpeq 19^{\circ} .23^{\prime} \cdot 47^{\prime \prime}\). with latitude \(2^{\circ}{ }^{\circ}\) \(1^{\prime} .59^{\prime \prime}\). fouth. The fame day at \(5^{h}\) in the morning at Bofon in Nev-England, the Comet was diftant from Spica ' \({ }^{1}\) r \({ }^{\circ}\) with the difference of \(40^{\circ}\) in latitude. The fame day in the ifland of Jamaica, it was about \(\mathrm{I}^{\circ}\) diftant from Spica '². The fame day Mr. Artbur Storer at the river Patuxent near Hunting Creek in Maryland in the confines of Virginia in lat. \(38 \frac{10}{20}\) at \(s\) in the morning (that is at \(10^{\text {b }}\) : at London) faw the Comet above Spica m , and very nearly join'd with ir, the diftance between them being about \(\frac{3}{4}\) of one deg. And from thefe obfervations compar'd I conclude, that at \(9^{\text {b }} 44^{\prime}\) at London, the Comet was in \(\simeq 18^{\circ}\). \(50^{\prime}\) with about \(\mathrm{I}^{\circ}\). \(25^{\prime}\) latitude fouth. Now by the theory the Comet was at that time in \(\approx 18^{\circ}\). \(52^{\prime} .15^{\prime \prime}\). with \(1^{\circ}\). \(26^{\prime} .54^{\prime \prime}\). -lat. fouth.

Nov. 20. ATontenari profeffor of aftronomy at Padua, at \(\sigma^{\mathrm{h}}\) in the morning at Venice (that is \(9^{\mathrm{h}}\). \(10^{\prime}\) at London) faw the Comet in \(\simeq 23^{\circ}\). with latitude \(1^{\circ}\). \(30^{\prime}\) fouth. The fame day at Bofon, it was diftant from Spica 叹 by about \(4^{\circ}\) of longitude eaft, and therefore was in \(\approx 23^{\circ} .24^{\prime}\) nearly.

Nov. 21. Ponthans and his companions at \(7^{\frac{14}{4}}\) in the morning, obferv'd the Comet in \(\approx 27^{\circ}\). \(50^{\prime}\) with latitude \(1^{\circ}\). \(1 \sigma^{\prime}\). fouth. Cellius in \(\approx 28^{\circ} . P\). Ango at \(\xi^{\text {b }}\) in the morning, in \(\approx 27^{\circ}\). \(45^{\circ}\). Montenari in \(\approx 27^{\circ}\). s1'. The fame day in the ifland of Famaica, it was feen near the beginning of \(m\) and of about the fame la-
titude with Spica 财，that is， \(2^{\circ}\) ． \(2^{\prime}\) ．The fame day at \(5^{n}\) morning at Ballafore in the Eaft－Indies（that is at I \(\mathbf{I}^{\text {n }}, 20^{\prime}\) of the night preceding at London）the dif－ tance of the Comet from Spica＇\({ }^{1 / 2}\) was taken \(7^{\circ} \cdot 35^{\prime}\) ． to the eaft．It was in a right line between the fike and the ballance，and therefore was then in \(\leadsto 26^{\circ}\) ． \(58^{\circ}\) ． with about \(\mathrm{I}^{\circ}\) ． \(1 \mathrm{I}^{\prime}\) ．lat．fouth；and after \(5^{\text {b }}, 40^{\prime}\) ．（that is at \(5^{\mathrm{n}}\) morning at London）it was in \({ }^{2} 28^{\circ}\) ． \(12^{\prime}\) ．with \(\mathbf{x}^{\circ} .16^{\prime}\) ．lat．fouth．Now by the theory the Comet was then in \(\approx 28^{\circ}\) ． \(10^{\prime} .36^{\prime \prime \prime}\) with \(1^{\circ} \cdot 53^{\prime} \cdot 35^{\prime \prime}\) lat． fouth．

Nov．22．The Comet was feen by Montenari in \(m\) \(2^{\circ} .33^{\prime}\) ．But at Bofon in \(N_{e v v}\)－England，it was found in about \(\mathrm{m} 3^{\circ}\) ，and with almoft the lame latitude as be－ fore，that is， \(1^{\circ} \cdot 30^{\prime}\) ．The fame day at \(5^{\mathrm{h}}\) morning at Ballafore the Comet was obferv＇d in \(\mathrm{MI}^{\circ} \mathrm{I}^{\circ} .50^{\prime}\) ；and therefore at \(5^{\mathrm{h}}\) morning at London the Comet was in \(m\) \(3^{\circ}\) ． \(5^{\prime}\) nearly．The fame day at \(\sigma_{\frac{1}{2}}\) in the morning at London，Dr．Hookobferv＇d it in about \(\mathrm{m} 3^{\circ} .3^{\circ}\) ； and that in the right line which paffeth through Spica投 and Cor Leonis；not indeed exactly，but deviating a little from that line towards the north．Montenari like－ wife obferv＇d，that this day and fome days after，a right line drawn from the Comet through Spica，pafs＇d by the fouth fide of Cor Leonis，at a very fmall diftance therefrom．The right line through Cor Leonis and Spica 财 did cut the ecliptic in 投 \(3^{\circ} .46^{\prime}\) at an angle of \(2^{\circ}\) ． \(51^{\prime}\) ．And if the Comet had been in this line and in \(m 3^{\circ}\) ．its latitude would have been \(2^{\circ}\) ． \(26^{\prime}\) ． But fince Hook and Montenari agree，that the Comet was at fome fmall diftance from this line towards the north，its latitude muft have been fomething lefs．On the 20th，by the obfervation of Montenari，its latitude was almoft the fame with that of Spica，that is about \(1^{\circ} \cdot 30^{\prime}\) ．But by the agreement of Hook，Montenari and Ango，the latitude was continually increafing and there－ fore mult now on the 22d，be fenfibly greater than
\[
A \text { a } 2 \quad 1^{\circ}=
\]
\(1^{\circ} .30^{\prime}\). And taking a mean between the extreme limits but now ftated \(2^{\circ} \cdot 26^{\prime}\) and \(1^{\circ} \cdot 30^{\prime}\), the latitude will be about \(\mathrm{I}^{\circ} .58^{\prime}\). Hook and Montenari agree that the tail of the Comet was directed towards Spica 叹, declining a little from that Star towards the fouth according to Hook, but towards the north, according to Montenari. And therefore that declination was farcely fenfible; and the tail lying nearly parallel to the equator, deviated a little from the oppofition of the Sun, towards the north.

Nov. 23. O. S. At \({ }^{\text {h }}\) morning at Nuremberg (that is at \(4^{\mathrm{h}} \frac{1}{2}\) at London) Mr. Zimmerman faw the Comet in \(m 8^{\circ} .8^{\prime}\) with \(2^{\circ} .31^{\prime}\) fouth lat. its place being collected by taking its diftances from fixed Stars.

Nov. 24. Before Sun-rifing the Comer was feen by Montenari in \(M 12^{\circ} .52^{\prime}\) on the north fide of the right line through Cor Leonis and Spica \({ }^{\mathrm{x}} \mathrm{X}\), and therefore its latitude was fomething lefs than \(2^{\circ} .38^{\prime \prime}\). And fince the latitude, as we faid, by the concurring obfervations of Montenari, Ango, and Hook, was continually increafing; therefore it was now on the \(24^{\text {th }}\) fomething greater than \(1^{\circ} .58^{\prime}\); and, taking the mean quantity, may be reckon'd \(2^{\circ}\). \(18^{\prime}\), without any confiderable error. Ponthaus and Galletius will have it that the latitude was now decreafing; and Cellizs and the obferver in Nev-England, that it continued the ifame, viz. of about \(1^{\circ}\), or \(1 \frac{10}{2}\). The obfervations of Ponthaus and Cellius are more rude, efpecially thofe which were made by taking the azimuths and altitudes; as are alfo the obiervations of Galletius. Thofe are better which were made by taking the pofition of the Comet to the fixt Stars by Montenari, Hook, Ango, and the obferver in New-England, and fometimes by Ponthaws and Cellius. The fame day, at \(5^{\text {h }}\) morning at Ballafore the Comet was obferved in \(1 \mathrm{II} 1 \mathrm{I}^{\circ} .45^{\prime}\); and therefore at \(5^{h}\) morning at London was in in \(13^{\circ}\) nearly. And by.

Book III. of Natural Philofophy: 357
by the theory, the Comet was at that time in M \(13^{\circ} .22^{\prime} .42^{\prime \prime}\).
Nov. 25. Before Sun-rife Montenari obferv'd the Comet in \(\mathrm{ml}_{1} 7^{0 \frac{1}{4}}\) nearly; and Cellius obferv'd at the. fame time that the Comer was in a right line between the bright Star in the right thigh of Virgo and the fouthern Tcale of Libra; and this right line cuts the Comet's way in m \(18^{\circ} .36^{\prime}\). And by the theory the Mividion al Comet was in \(M 180 \frac{1}{3}\) nearly.
From all this it is plain that thefe obfervations agree chave with the theory, fo far as they agree with one another, and by this agreement it is made clear that it was one and the fame Comet that appeared all the time from Nov. 4. to Mar. 9. The path of this Comet did twice cut the plane of the ecliptic, and therefore was not a right line. It did cut the ecliptic, not in oppofite parts of the heavens, but in the end of Virgo and beginning of Capricorn, including an arc of about \(98^{\circ}\). And therefore the way of the Comet did very much deviate from the path of a great circle. For in the month of Nov. it declined at leaft \(3^{\circ}\) from the ecliptic towards the fouth; and in the month of Dec. following it declined \(29^{\circ}\) from the ecliptic towards the north; the two parts of the orbit in which the Comet defcended towards the Sun, and afcended again from the Sun, declining one from the other by an apparent angle of above \(30^{\circ}\), as oblerv'd by Muntenari. This Comet travel'd over 9 figns, to wit, from the laft reg. of \(\Omega\) to the beginning of \(I\), befide the fign of \(\ell\), thro' which it pafs'd before it began to be feen. And there is no other theory by which a Comet can go over fo great a part of the heavens with a regular motion. The motion of this Comet was very unequable. For about the 20th of Nov. it defcrib'd about \(5^{\circ}\) a day. Then its motion being retarded, between Nov. 26 . and Dec. 12. to wit, in the fpace of \(15 \frac{1}{2}\) days, it defcrib'd only \(40^{\circ}\). But the motion thereof being afterwards accelerated, it
A a 3.
defcrib'd

\section*{358} Mathematical Principles Book III.
defcrib'd near \(5^{\circ}\) a day, till its motion began to be again retarded. And the theory which juftly correfponds with a motion fo unequable, and through fo great a part of the heavens, which obferves the fame laws with the theory of the Planets, and which accurately agrees with accurate aftronomical obfervations, cannot be otherwife than true.

And thinking it would not be improper, I have giv'n (Pl. 18.) a true reprefentation of the orbit which this Comet defrib'd, and of the tail which it emitted in feveral places, in the annexed figure; protracted in the plane of the trajectory. In this fcheme \(A B C\) reprefents the trajectory of the Comet, \(D\) the Sun, \(D E\) the axis of the trajectory, \(D F\) the line of the nodes, \(G H\) the interfection of the fphere of the orbis maynus with the plane of the trajectory, \(I\) the place of the Comet Nov. 4. Ann. 1680, \(K\) the place of the fame Nov. ir, \(L\) the place of the fame Nov. 19. \(M\) its place Dec. ri. \(N\) its place Dec. 21. O its place Dec. 29. \(P\) its place Fan. 5. following, \(O\) its place \(\mathfrak{F a n . 2 5 . R}\) its place Feb. 5. S its place Feb. 2 5. \(T\) its place March 5. and \(\boldsymbol{V}\) its place March 9. In determining the length of the tail I made the following obfervations.

Nov. 4. and 6 . the tail did not appear; Nov. ir. the tail jult begun to thew iteelf, but did not appear above \(\frac{1}{2}\) deg. long through a 10 foot telefcope; Nov. 17. the tail was feen by \(P\) oonthaus more than \(15^{\circ}\) long; Nov. 18. in New-England the tail appear'd \(30^{\circ}\) long, and directly oppofite to the Sun, extending itfeif to the planet Mars, which was then in 仅 \(9^{\circ}\). \(54^{\prime}\); Nov. 19. in Mary-Land, the tail was found \(15^{\circ}\) or \(20^{\circ}\) long. Dec. 10. (by the obfervation of Mr. Flamflead) the tail pafs'd through the middle of the diftance intercepted between the tail of the Serpent of Ophischus and the Star \(\delta\) in the fouth wing of Aquila, and did terminate near the Stars \(A, \omega, b\), in Bajer's tables. Therefore the end of the tail was in \(V s 19 \frac{10}{2}\), with latitude about

\[
1
\]
\[
\cdots \cdots \quad-\cdots \quad \cdots \cdots
\]
\(34 \frac{1}{4}^{\circ}\) north; Dec. In: it afcended to the head of Sa-cabiesen gitta (Bayer's \(\alpha, \beta\)) terminating in Vs \(_{26} 26^{\circ} .43^{\prime}\), with latitude \(38^{\circ} .34^{\prime}\) north; Dec. 12. it pafsed through the middle of Sagitta, nor did it reach much farther; ter-ale nuza r minating in \({ }^{m} 4^{\frac{0}{2 \prime \prime}}\), with latitude \(42 \frac{13}{20}\) north nearly. But thefe things are to be underfood of the length of the brighter part of the tail. For with a more faint light, obferv'd too perhaps in a ferener sky, at Rome, Dec. 12. \(5^{\text {h }} \cdot 40^{\text {T }}\). by the obfervation of Ponibeus, the tail arofe to \(10^{\circ}\) above the rump of the fwan, and the fide thereof towards the weft and towards the north was \(45^{\prime}\) diftant from this flar. But about that time the tail was \(3^{\circ}\) broad towards the upper end; and therefore the middle thereof was \(2^{\circ}\). \(15^{\circ}\) diffant from that ftar towards the fouth, and the upper end was \(\notin\) in \(22^{\circ}\) with latitude \(61^{\circ}\) north. And thence the tail was about \(70^{\circ}\) long. Dec. 2 I. it extended aimoft to Cafliopeia's chair, equally diftant from \(\beta\) and from Schedir, fo as its diffance from either of the two was equal to the diftance of the one from the other, and therefore did terminate in \(r\) \(24^{\circ}\) with latitude \(47 \frac{1}{2}^{\frac{1}{2}}\). Dec. 29 . it reach'd to a contact with Scheat on its left, and exactly fill'd up the Space between the two flars in the northern foot of \(A n\) dromeda, being \(54^{\circ}\) in length; and therefore terminated in \(\gamma 19^{\circ}\) with \(35^{\circ}\) of latitude. Fan. 5. it touch'd the Star \(\pi\) in the breaft of Andromeda on its right fide, and the Star \(\mu\) of the girdle on its left; and according to our obfervacions, was \(40^{\circ}\) long; but jit was curved, and the convex fide thereoflay to the fouth. And near the head of the Comet, it made an angle of \(4{ }^{\circ}\) with the circle which pafs'd through the Sun and the Comet's head. But towards the other end, it was inclin'd to that circle in an angle of about \(10^{\circ}\) or \(11^{\circ}\). And the chord of the tail contain'd with that circle an angle of 80. Fan. 13. the tail terminated between Alamech and Algol, with a light that was fenfible enough; but with a faint light it ended over againft the Star \(x\) in A a 4 Eontrio Perfens's

Perseus's fides. . The diftance of the end of the tail from the circle palling through the Sun and the Comet, was \(3^{\circ}\). \(50^{\prime}\). And the inclination of the chord of the tail to that circle was \(8 \frac{3^{\circ}}{}{ }^{\circ}\). 7 an. 25 and \(2 \sigma\). it hone with a faint light to the length of \(6^{\circ}\) or \(7^{\circ}\). And for a night or two after when there was a very clear sky, it extended to the length of \(12^{\circ}\), or fomething more, with a light that was very faint and very hardly to be feen. But the axe thereof was exactly directed to the bright Star in the eaftern Moulder of Auriga, and therefore deviated from the oppofition of the Sun towards the north, by an angle of \(10^{\circ}\). Laftly, Feb. 10. with a telefcope I obferv'd the tail \(2^{\circ}\) long. For that fainter light which I poke of, did not appear through the gaffes. But Ponthass writes that on Fib. 7. he fam the tail \(12^{\circ}\) long. Feb. 25 . the Comet was without a tail, and fo continued till it difappeared.

Now if one reflects upon the orbit defcrib'd, and duly confiders the other appearances of this Comet, he will be cafily fatisfy'd that the bodies of Comets are solid, compact, fixt and durable, like the bodies of the Planets. For if they were nothing elf but the vapours or exhalations of the Earth, of the Sun, and other Planets, this Comet in irs paffage by the neighbourhood of the Sun, would have been immediately diffipared. For the heat of the Sun is as the denfity of its rays, that is, reciprocally as the fquare of the difrance of the places from the Sun. Therefore; fince on Dec. 8. when the Comet was in its perihelion, the difrance thereof from the centre of the Sun was to the diffance of the Earth from the fame as about \(\sigma\) to 1000, the Sun's heat on the Comet was at that time to the heat of the Summer-Sun with us, as 1000000 to 36 , or as 28000 to 1 . But the heat of boiling water is about 3 times greater than the beat which dry earth acquires from the Summer-Sun, as I have try'd; and the heat of red-hot iron (if my conjecture is right) is about

Book III. of Natural Philofophy.
about three or four times greater than the heat of boiling water. And therefore the hear, which dry earth on the Comet, while in its perihelion, might have conceived from the rays of the Sun, was about 2000 times greater than the heat of red-hot iron. But by fo fierce a heat, vapours and exhalations, and every volatile matter muft have been immediately confum'd and diffipated.

This Comet therefore mult have conceiv'd an immenfe heat f:om the Sun, and retain that heat for an pummecer exceeding long time. For a globe of iron of an inch in diameter, expos'd red-hot to to the open air, will fcarcely lofe all its heat in an hour's time; but a greater globe would retain its heat longer in the proportion of its diameter, becaufe the furface (in proportion to which it is cool'd by the contact of the ambient air) is in that proportion lefs in refpect of the quantity of the included hot matter. And therefore a globe of red-hor iron, equal to our Earth, that is, about 40000000 feer in diameter, would fcarcely cool in an equal number of days, or in above 50050 years. But I fulpect that the duration of heat may, on account of fome latent caufes, relacion increafe in a yet lefs proportion than that of the diameter; and I hould be glad that the true proportion was inveftigated by experiments.

It is further to be obferv'd, that the Comet in the adumas month of December, juft after it had been heated by the Sun, did emit a much longer tail, and much more fplendid, than in the month of November before, when it had not yet arriv'd at its perihelion. And univerfally, the greateft and moft fulgent tails always arife foom Comets, immediately after their paffing by the despoun neighbourhood of the Sun. Therefore the heat re- prowisidad ceived by the Comet conduces to the greatnets of the tail. From whence I think I may infer, that the tail is nothing elfe but a very fine vapour, which the modia head or nucleus of the Comer emits by its heat. cabers

But

But we have had three feveral opinions about the tails of Comets. For fome will have it, that they are nothing elfe but the beams of the Sun's light tranfmitted throuigh the Comet's heads, which they fuppofe to be tranfparent; others that they proceed from the refraction which light fuffers in paffing from the Comet's head to the Earth: and laftly others, that they are a fort of clouds or vapour conftantly rifing from the Comet's heads, and tending towards the parts oppofite to the Sun. The firft is the opinion of fuch, as are yet unscquainted with optics. For the beams of the Sun are feen in a darkned room only in confequence of the light that is refleted from them by the little particles of duft and fmoak which are always fying about in the air. And for that reafon in air impregnated with thick fmoak, thofe beams appear with great brightnefs, and move the fenfe vigoroully; in a yet finer air they appear more faint, and are lefs eafily difcerned; but in the heavens, where there is no matter to reflect the light, they can never be feen at all. Light is not feen as it is in the beam, but as it is thence reflected to our eys. For vifion can be no otherwife produced than by rays falling upon the eyes. And therefore there muft be fome reflecting matter in thofe parts where the tails of the Comets are feen: for otherwife, fince all the celffial fpaces are equally illuminated by the Sun's light, no fart of the heavens could appear with more fplendor than another. The fecond opinion is liable to many difficulties. The taile of Comets are never feen variegated with thofe colours which commonlyare infeparable from refraction. And the diftinat tranfmifion of the light of the fixt Stars and Planets to us, is a demonftration that the ather or celeftial medium is not endow'd with any refractive power. For as to what is alledg'd that the fixt Stars have been fometimes feen by the Egyptians, environ'd with a Coma, or Capillitium, becaule that has but rarely happen'd, it

\section*{Book III. of Natural Pbilofop.sy. 363}
is rather to be afcrib'd to a cafual refraction of clouds; mejor and fo the radiation and fcintillation of the fixt Stars, to the refractions both of the eyes and air. For upon laying a telefcope to the eye thofe radiations and fcir-colocando cillations immediately difappear. By the tremulous agitation of the air and afcending vapours, it happens that the rays of light are alternately turn'd afide from the a parte narrow fpace of the pupil of the eye; but no fuch thing can have place in the much wider aperture of the object-glafs of a telefcope. And hence it is, that a fcintillation is occafion'd in the former cafe, which ceafes in the latter. And this ceffation in the latter cafe is a demonftration of the regular tranfmiffion of light through the heavens, without any fenfible refraction. But to obviate an objection that may be made from the appearing of no tail, in fuch Comets as fhine but with a faint light; as if the fecondary rays were then too weak to affect the eyes, and for that reafon it is that the tails of the fixt Stars do not appear; we are to confider, that by the means of telefcopes the light of the fixt Stars may be augmented above an hundred fold, and yet no tails are feen; that the light of the planets is yet more copious without, any tail; but that Comets are feen fometimes with huge tails, when the light of their heads is but faint and dull. For fo it happen'd in the Comet of the ycar 1680, when in the montiz of Dec. it was fearcely equal in light to the Stars of the fecond magnitude, and yet emitted a notable tail, extending to the length of \(40^{\circ}, 50^{\circ}, 60^{\circ}\) or \(70^{\circ}\), and upwards; and afrerwards on the 27 and 28 of Fansary when the head appearld but as a Star of the \(7^{\text {h }}\) magnitude, yet the tail (as was faid above) with a light that was fenfible enough, though faint, was ftretcht out to 6 or 7 degrees in length, and with a languifhing light that was more dificulty feen, ev'n to \(12^{\circ}\). and upwards. But on the 9 and 10 of Fcbruary, when to the 'naked eye) the head appear'd no more, through a teler
wist a telefcope I view'd the tail of \(2^{\circ}\) in length. But farpoteriommaty cher if the tail was owing to the refraction of the celestial matter, and did deviate from the oppofition of the Sun, according to the Figure of the heavens; that deviation in the fame places of the heavens should be always directed towards the fame parts. But the Comet of the year 1680 December \(28{ }^{d}, 8 \frac{1}{2}\). P. M. at London was feen in \(\mathscr{A} 8^{\prime \prime} .4 \mathrm{I}^{\prime}\). with latitude north \(28^{\circ} .6^{\prime}\); while the Sun was in Vs \(18^{\circ} .26^{\prime}\). And the Comer of the year 1577 Dec. \(29^{\text {d. . was in }} \because 80\). \(41^{8}\), with latitude north \(28^{\circ} .40^{\prime}\), and the Sun as before in about vs \(18^{\circ} .26^{\prime}\). In both cafes the fituation of the Earth was the fame, and the Comet appear'd in the fame place of the heavens: Yet in the former cafe the tail of the Comet (as well by my obfervations as by the obfervations of others) deviated from the opposition of the Sun towards the north, by an angle of \(4 \frac{1}{2}\) degrees, whereas in the latter, there was (according to the obfervations of Tycho) a deviaton of 21 degrees towards the louth. The refraction therefore of the heavens being thus difprov'd, it remains that the phenomena of the tails of Comets mut be derived from tome reflecting matter.

And that the tails of Comets do arife from their heads, and tend towards the parts oppofite to the Sun, is further confirm'd from the laws which the tails obServe. As that lying in the planes of the Comet's orbits which pals through the Sun, they confantly deviate from the oppofition of the Sun towards the parts which the Comet's heads in their progrefs along there orbits have left. That to a fpectator, placed in thole planes, they appear in the parts directly oppofite to the Sun ; bur as the fpectator recedes from thole planes, their deviation begins to appear, and daily becomes grater. That the deviation, ceteris paribus, appears tels, when the tail is more oblique to the orbit of the Comet, as well as when the head of the Comet approaches

\section*{Book III. of Natural Philosophy:}
rearer to the Sun, especially if the angle of deviation is Intimated near the head of the Comet. That the tails which have no deviation appear freight, but the tails deveduwhich deviate are likewife bended into a certain cur-emestrad a nature. That this curvature is greater when the deviation is greater; and is more fenfible, when the tail, ceteris paribs, is longer: for in the hotter tails the curvature mas aortas is hardly to be perceived. That the angle of deviation difficile is left near the Comet's head, but greater towards the other end of the tail; and that because the convex fide of the tail regards the parts, from which the deviation is made, and which lye in a right line drawn out in- hernia finitely from the Sun through the Comet's head. And that the tails that are long and broad, and Shine with a auchon ftronger light, appear more resplendent and more exactly defin'd on the convex than on the concave fide. Upon which accounts, it is plain that the phenomena claro of the tails of Comets, depend upon the motions of their heads, and by no means upon the places of the heavens in which their heads are feen, and that therefore the tails of Comets do not proceed from the refraction of the heavens, but from their own heads, cubcras which furnifh the matter that forms the tail. For, as in our air, the fmoak of a heated body afcends, either perpendicularly if the body is at reft, or obliquely, if the body is moved obliquely; fo in the heavens, where all bodies gravitate towards the Sun, fmoak and vapour mut (as we have already fid) afcend from the Sun, and either rife perpendicularly, if the froaking body is at reft; or obliquely, if the body, in all the progret's of its motion, is always leaving tho fe places from which the upper or higher parts of the vapour had riven before. And that obliquity will be leaft, where the va- mimimo pour afcends with molt velocity, (to wit) near the frockmionaraime

\footnotetext{
humor
}
 ing body, when that is near the Sun. But becaufe the obliquity varies, the column of vapour will be incurvated; and because the vapour in the preceding fine is
fomething more recent, that is, has afcended fomething more late from the body, it will therefore be fomething more denfe on that fides, and mut on that account refleet more light, as well as be better defin'd. I add nothing concerning the fudden uncertain agitation of the tails of Comets, and their irregular figures, which Authors fometimes defcribe, because they may arife from the mutations of our air, and the motions of our Tat ur clouds, in part obfcuring thole tails; or perhaps from parts of the Via Lactea, which might have been confounded with and miftaken for parts of the tails of the Comets as they (paffed by.) miter

But that the atmof pheres of Comets may furnif a fupply of vapour, great enough to fill fo immenfe faces, we may eafily underftand from the rarity of our own air. For the air near the furface of our Earth, poffeffes a pace 850 times greater than water of the fame weight. And therefore a cylinder of air 850 feet high, is of equal weight with a cylinder of water, of the fame breadth and but one foot high. But a cylinder of air, reaching to the top of the atmosphere, is of equal weight with a cylinder of water, about 33 feet high: and therefore, if from the whole cylinder of air, the lower part of 850 feet high is taken away, the remaining upper part will be of equal weight with a cylinder of water 32 feet high. And from thence (and by the hyporhefis, confirm'd by many experiments, that the compreffion of air is as the weight of the incumbent atmofphere, and that the force of gravity is reciprocally as the square of the diftance from the center of the Earth) railing a calculus, by cor. prop. 22. book 2 . I found, that at the height of one femidiameter of the Earth, reckon'd from the Earth's furface, the air is more rare than with us, in a far greater proportion than of the whole face within the orb of Saturn to a spherical space of one inch in diameter. And therefore if a \(f_{\mathrm{p}}\) here of our air, of but one inch in thick1010
ness

Book III.
nefs, was equally rarify'd with the air at the heighth of ezjuer one femi-diameter of the Earth from the Earth's furface, it would fill all the regions of the Planets to the orb of Saturn and far beyond it. Wherefore fince the air at greater diftances is immenfely rarify'd, and the coma or atmofphere of Comets is ordinarily about ten times higher, reckoning from their centers, than the furface of the nucleus, and the tails rife yer higher, they muft therefore be exceedingly rare. And tho on account of the much thicker atmorpheres of Comets and the great gravitation of their bodies towards the Sun, as well as of the particles of their air and vapours mutually one towards another, it may happen that the air in the celeftial fpaces and in the tails of Comet', is not fo vaftly rarify'd ; yet from this computation it is plain, that a very fmall quantity of air and vapour is abundantly fufficient to produce all the appearances of the tails of Comets. For that they are indeed of a very notable rarity appears from the fhining of the atto
 cal

 cenris Stars through them. The atmofphere of the Earth, illuminated by the Suns light, tho but of a few miles in thicknefs, quite obfcures and extinguifhes the light not only of all the Stars, but ev'n of the Mooniffelf: whereas the fmalleft Stars are feen to thine through the immenfe thicknefs of the tails of Comets, likewife illuminated by the Sun, without the leaft diminution of their fplendor. Nor is the brightnefs of the tails of moft Comets ordinarily greater than that of our air an inch or two in thicknefs, reflecting in a darken'd room the light of the Sun beams let in by an hole of the window-fhut. = ventan es.vrade

And we may pretty nearly determine the time fpent during the afcent of the vapour from the Comet's head to the extremity of the tail, by drawing a right line from the extremity of the tail to the Sun, and marking the place where that right line interfects the Comet's orbit. For the vapour that is now in the extremity of the
tail, if it has afcended in a right line from the Sun, muft have begun to rife from the head, at the time when the head was in the point of interfection. It is true, the vapour does not rife in a right line from the Sun, but retaining the motion which it had from the Comer before its afcent, and compounding that motion with its motion of afcent, arifes obliquely. And therefore, the folution of the problem will be more exact, if we draw the line which interfects the orbit parallel to the length of the tail; or rather (becaufe of the curvilinear motion of the Comer,) diverging a little from the line or length of the tait. And by means of this principle I found, that the vapour which Fan. 25 . was in the extremity of the tail, had begun to rife from the head before Dec. ir. and therefore had fpent in its whole afcent 45 days; but that 'the whole tail which appear'd on Dec. io. had finifh'd its afcent in the fpace of the two days then elaps'd from the time of the Comet's being in its perihelion. The vapour therefore, about the beginning and in the neighbourhood of the Sun, rofe with the greateft velocity, and afterwards continu'd to afcend with a motion conftantly retarded by its own gravity; and the higher it afcended, the more it added to the length of the tail. And while the tail continu'd to be feen, it was made up of almoft all that vapour, which had rifen fince the time of the Co met's being in its perihelion; nor did that part of the vapour which had rifen firft, and which form'd the extremity of the tail, ceafe to appear, till its too great diftance, as well from the Sun from which it receiv'd its light, as from our eyes, render'd it invifible. Whence alfo it is, that the tails of other Comets which are Short, do not rife from their heads with a fwift and continual motion, and foon after)difappear; but are permanent and lafting columns of vapours and exhalations; which afcending from the heads with a flow motion of many days, and partaking of the motion of
partionoudo the

Book III. of Natural Pbilofophy:
the heads which they had from the beginning, continue to go along together with them through the heavens. From whence again we have another argument proving the celeftial faces to be free and without refiffance, fince in them not only the folid bodies of the Planets and Comets, but alfo the extremely rare vapours of Comets tails, maintain their rapid motions with great freedom, and for an exceeding long time.

Kopler affribes the alcent of the tails of the Comets to the atmofpheres of their heads; and their direction towards the parts oppofite to the Sun, to the action of the rays of light carrying along, with them the matter of the Comet's tails. And without any greas incongruity we may fuppofe, that in fo free fpaces, fo fine a matter as that of the \(x\) ther may yield to the action of the rays of the Sun's light, though thofe rays are not able fenfibly to move the grofs fubftances in our parts, which are clogg'd with fo palpable a refiftance. Anorher author thinks, that there may be a fort of particles of matter endow'd with a principle of levity, as well as others are with a power of gravity; that the matter of the tails of Comets may be of the former fort, and that its afcent from the Sun, may be owing to its levity. But confidering that the gravity of terreftrial bodies is as the matter of the bodies, and therefore can be neither more nor lefs in the fame quantity of matter, I am inclin'd to believe that this afcent may rather proceed from the rarefation of the matter of the Comet's tails. The afcent of fmoak in a chimney is owing to the impulfe of the air, with which it is entangled. The air rarefy'd by heat afcends, becaufe its feccific gravity is diminith'd, and in its afcent carries along with it the fmoak, with which it is engag'd. And why may not the tail of a Comet rife from the Sun after the fame manner? For the Sun's rays do not act \(\mu\) pon the mediums which they pervade otherwife than
by reflettion and refraction. And thofe reftecting particles heated by this action, heat the matter of the ærher which is involv'd with them. That matter is rarefied by the heat which it acquires; and becaufe by this rarefation the fpecific gravity with which it tended towards the Sun before is diminifh'd, it will afcend therefrom, and carry along with it the reflecting particles, of which the tail of the Comet is compos'd. But the afcent of the vapours is further promoted by their circumgyration about the Sun, in confequence whereof they endeavour to recede from the Sun, while the Sun's atmofphere and the other matter of the heavens are either altogether quiefcent, or are only mov'd with a flower circumgyration deriv'd from the rotation of the Sun. And thefe are the caufes of the afcent of the tails of the Comets in the neighbourhood of the Sun, where their orbits are bent into a greater curvature, and the Comets themfelves are plung'd into the denfer, and cherefore heavier parts of the Sun's armofphere; upon which account they do then emit tails of an huge length. For the tails which then arife, retaining their own proper motion, and in the mean time gravitating towards the Sun, muft be revolv'd in ellipfes about the Sun in like manner as the heads are, and by that motion muft always accompany the heads, and freely adhere to them. For the gravitation of the vapours towards the Sun can no more force the tails to abandon the heads, and defcend to the Sun, than the gravitation of the heads can oblige them to fall from the tails. They muft by their common gravity, either fall together towards the Sun, or be retarded together in their common afcent therefrom. And therefore, (whether from the caufes already defcrib'd, or from any others) the tails and heads of Comets may eafily acquire, and freely retain any pofition one to the other, without difturbance or impediment from that common gravitation.

The tails therefore that rife in the perihelion pofitiOns of the Comets will go along with their heads into far remote parts, and together with the heads will either return again from thence to us, after a long courfe of years; or rather, will be there rarefied, and by degrees quite vanifh away. For afterwards in the defcent of the heads towards the Sun, new fhort tails will be emitted from the heads with a flow motion; and thofe tails by degrees will be augmented immenlly, efpecially in fuch Comets as in their perihelion diftances defcend as low as the Sun's atmofphere. For all vapour in thofe free fpaces is in a perpetual ftate of rarefaction and dilatation. And from hence it is, that the tails of all Comets are broader at their upper extremity, than near their heads. And it is not unlikely, but that the vapour, thus perpetually rarefy'd and dilated, may be at laft diffipated, and featter'd through the whole heavens, and by little and little be attracted towards the Planets by its gravity, and mixed with their atmofphere. For as the feas are abfolutely neceffary to the conftitution of our Earth, that from them, the Sun, by its heat, may exhale a fufficient quantity of vapours, which being gather'd together into clouds, may drop down in rain, for watering of the earth, and for the production and nourifhment of vegetables; or being condens'd with cold on the tops of mountains, (as fome philofophers with reafon judge) may run down in fprings and rivers; fo for the confervation of the feas, and fluids of the Planets, Comets feem to be requir'd, that from their exhalations and vapours condens'd, the waftes of the Planetary fluids, fpent upon vegetation and putrefaction, and converted into dry earth, may be continually fupplied and made up. For all vegetables entirely derive their growths from fluids, and afterwards in great meafure are turn'd into dry earth by putrefaction; and a fort of flime is always found to fettle at the bottom of purrified fluids. And hence it is, that the bulk of the folid earth is creafe, and quite fail at laft. I fufpect moreover, that 'tis chiefly from the Comets that firitt comes, which is indeed the fmalleft, but the moft fubtle and ufeful part of our air, and "fo" much required to fuftain the life of all things with us.

The atmofpheres of Comets, in their defcent towards the Sun, by running out into the tails are fpent and diminifh'd, and become narrower, at leaft on that fide which regards the Sun; and in receding from the Sun, when they lefs run out into the tails, they are again enlarg'd, if Hevelius has juftly mark'd their appearances. But they are feen leaft of all juft after they have been moft heated by the Sun, and on that account then emit the longeft and moft refplendent tails; and perhaps at the fame time the nuclei are environ'd with a denfer and blacker fmoak, in the lowermoft parts of their atmofphere. For fmoak that is rais'd by a great and intenfe heat, is commonly the denfer and blacker. Thus the head of that Comet which we have been defribing, at equal diftances both from the Sun and from the Earth, appear'd darker after it had pafs'd by its perihelion, than it did before. For in the month of \(\mathrm{De}_{e}\) cember it was commonly compar'd with the Stars of the third magnitude, but in November, with thofe of the firft or fecond. And fuch as fawiboth appearances, have defcrib'd the firft, as of another and greater Comet than the fecond. For November 19. this Comet appear'd to a young man at Cambridge, though with a pale and dull light, yet equal to Spica Virginis; and at that time it fhone with greater brightnefs than it did afterwards. And Montenari, Nov. 20.1f. vet. obferved it larger than the Stars of the firft magnitude, its tail being then 2 deg. long. And Mr. Storer, (by letters which have come into my hands) writes, that in the month of Dec. when the tail appear'd of the greateft bulk
and fplendor, the head was but fmall, and far lefs than that which was feen in the month of November before Sun-rifing; and conjecturing at the caufe of the appearance, he judg'd it to proceed from there being a greater quantity of matter in the head at firft, which was afterwards gradually fpent.

And, which further makes for the fame purpofe, I find, that the heads of other Comets, which did put forth tails of the greareft bulk and fplendor, have appeared but obfcure and fmall. For in Brafile, March 5. 1668. \(7^{\text {b }}\) P. M. St. N. P. Valentinus Eftancius faw a Comer near the horizon, and towards the fouth weft, with a head fo fmall as fcarcely to be difcern'd, but with a tail above meafure fplendid, fo that the reflection thereof from the fea was eafily feen by thofe who ftood upon the fhoar. And it look'd like a fiery beam extended \(23^{\circ}\) in length from weft to fouth, almoft parallel to the horizon. But this exceffive fplendor continu'd only three days, decreafing apace afterwards; and while the fplendor was decreafing, the bulk of the tail increas'd. Whence in Portugal, it is faid to have taken up one quarter of the heavens, that is, 45 degrees, extending from weft to eaft with a very notable fplendor, though the whole tail was not feen in thofe parts, becaufe the head was always hid under the horizon. And from the increafe of the bulk, and decreafe of the fplendor of the tail, it appears that the head was then in its recefs from the Sun, and had been very near to it in its perihelion, as the Comet of 1680 was. And we read, in the Saxon chronicle, of a like Comet appearing in the year i106, the Star 2 vhereof was fmall and obfcure, (as that of 1680.) but the Splendour of its tail was very bright, and like a buge fiery beam frettch'd ost in a direction between the eaft and north, as Hevelius has it alfo from Simeon the monk of Durham. This Comet appear'd in the beginning of February, about the evening, and towards the fouth weft part of heaven: B b 3

From whence, and from the pofition of the tail, we infer, that the head was near the Sun. Matthees Paris fays, It was diffant from the Sun by about a cubit, from three of the clock (rather fix) till nine, putting forth a long tail. Such alfo was that moft refplendent Comet, defcribed by Arifotle, lib. I. Meteor. 6. The head whereof could not be fien, becauje it bad fet before the Sun, or at leaft was bid nuder the Sun's rays; but next day it was feen as well as might be. For having left the Sun but a very litlle way, it fet immediately after it. And the fcat.cr'd light of the head, obfcur'd by the too great Jplendor (of the tail) did not yet appear. But aftervards (as Ariffoile lays) when the Jplendor (of the tail) was now dimisifj'd (the head of) the Comet recover'd its native brightnes; ; and the fplendour (of its tail) reach'd now to a third part of the heavens (that is, to \(60^{\circ}\).) This appearance was in the winter feafon, (an. 4. olymp. 101.) and rifing to Orion's girdle, it there vanif)'d ansay. It is true that the Comet of 1618 , which came out directly from under the Sun's rays, with a very large tail, feem'd to equal, if not to exceed, the Stars of the firft magnitude. But then abundance of other Comets have appear'd yet greater than this, that put forth horter tails; fome of which are faid to have appear'd as big as Jupiter; others as big as Venus, or even as the Moon.

We have faid, that Comets are a fort of Planets, revolv'd in very eccentric orbits about the Sun. And as in the Planets which are without tails, thofe are commonly lefs, which are revolv'd in leffer orbits, and nearer to the Sun; fo in Comets it is probable, that thofe which in their perihelion approach nearer to the Sun, are generally of lefs magnitude, that they may not agitate the Sun too much by their attractions. But as to the tranfverfe diameters of their orbits, and the periodic times of their revolutions, I leave them to be determin'd by comparing Comets together which after long intervals of time return again in the fame orv bits

Book III. of Natural Philofophy:
bit. In the mean time, the following propofition may give fome light in that enquiry.

\section*{Proposition XLII. Problem XXII.}

To correct a Comet's trajectory found as above.
Operation I. Affume that pofition of the plane presumiv? of the trajectory which was determin'd according to the preceding propofition. And felect three places of the Comet, deduc'd from very accurate obfervations, and at great diftances one from the other. Then fuppofe A to reprefent the time between the firft obfervation and the fecond; and B the time between the fecond and the third. But it will be convenient that in one of thofe times the Comet be in its perigeon, or at leaft not far from it. From thofe apparent pla-minime ces find by trigonometric operations the three true places of the Comet in that aflum'd plane of the trajectory ; then through the places found, and about the center of the Sun as the focus, defribe a conic fection by arithmetical operations, according to prop. 21 . book I. Let the areas of this figure which are terminated by radij drawn from the Sun to the places found, be D and E, to wit, D the area between the firft obfervation and the fecond, and \(E\) the area between the fecond and third. And let Treprefent the whole time, in which the whole area \(\mathrm{D}+\mathrm{E}\) hould be defcribed with the velocity of the Comet found by prop. 16. book I .

Oper. 2. Retaining the inclination of the plane of comeronam the trajectory to the plane of the ecliptic, let the longitude of the nodes of the plane of the trajectory be increas'd by the addition of 20 or 30 minutes, which call P. Then from the forefaid three obferv'd Clemo B b \(4^{\text {anticodichan places }}\)
places of the Comet, let the three true places be found (as before) in this new plane, as alfo the orbit paffing through thofe places, and the two areas of the fame defcrib'd between the two obfervations, which call \(d\) and \(\epsilon\); and let \(t\) be the whole time in which the whole area \(d+e\) fhould be defcrib'd.

Oper.3. Retaining the longitude of the nodes in the firft operation, let the inclination of the plane of the trajectory to the plane of the ecliptic be increas'd by adding thereto \(20^{\prime \prime}\) or \(30^{\prime}\), which call Q . Then from the forefaid three oblerv'd apparent places of the Comet, let the three true places be found in this new plane, as well as the orbit faflag through them, and the two areas of the fame defcrib'd between the obfervation, which call \(\delta\) and \(\varepsilon\), and lee \(\tau\) be the whole time in which the whole area \(\delta \dot{f}\) ihould be defcrib'd.

Then taking \(C\) to 1 , as \(A\) to \(B\); and \(G\) to 1 , as D to E ; and g to I , as \(d\) to \(e\); and \(\gamma\) to I , as \(\delta\) to \(\varepsilon\); let \(S\) be the true time between the firft obfervation and the third; and obferving well the figns \(\dot{f}\) and 一, let fuch numbers \(m\) and \(n\) be found out as will make \(2 \mathrm{G}-2 \mathrm{C},=m \mathrm{G}-m g-1-n \mathrm{G}-n \gamma\); and 2 T \(-2 \mathrm{~S}=m \mathrm{~T}-m t-1-n \mathrm{~T}-n \tau\). And, if in the firft operation I reprefents the inclination of the plane of the trajectory to the plane of the ecliptic, and.K the longitude of either node, then I-n Q will be the true inclination of the plane of the trajectory to the plane of the ecliptic ;and K-1-m P the true longitude of the node. And laftly, if in the firft, fecond, and third operations, the quantities \(R, r\), and \(\rho\), reprefent the parameters of the crajectory, and the quantities \(\frac{1}{L}, \frac{1}{l}, \frac{1}{\lambda}\), the tranfo verfe diameters of the fame ; then \(\mathrm{R}-\mid-m r-m \mathrm{R}+-n \rho-n \mathrm{R}\) will be the true parameter, and \(\frac{\mathrm{I}}{\mathrm{L}-1-m l-m \mathrm{~L}-n \lambda-n \mathrm{~L}}\) will be the true tranfyerfe diameter of the trajectory which
agree with the oblervations, wan nexed table, calculated by Dr, Halley:

\section*{To face Page 377}
\begin{tabular}{|c|c|c|}
\hline .om & The obfero'd Places & \\
\hline & \[
\begin{aligned}
& \text { Long. } \bumpeq \quad 7^{\text {d}} \cdot 01^{\prime} \cdot 00^{\prime \prime} \\
& \text { Lat. S. } \\
& 21 \cdot 39 \cdot 00
\end{aligned}
\] & \\
\hline & \[
\text { Long. } \approx 6.15 .00
\]
\[
\text { Lat. S. } 22 \cdot 24.00
\] & \[
=\begin{array}{r}
6.16 .05 \\
22.24 .00
\end{array}
\] \\
\hline & \[
\text { Long. } 2.06 .00
\]
\[
\text { Lat. S. } 25.22 .00
\] & \\
\hline \[
3 \cdot 3
\] & \[
\begin{array}{lr}
\hline \text { Long. § } & 2 \cdot 56.00 \\
\text { Lat. S. } & 49.25 .00
\end{array}
\] & \[
\begin{array}{rr}
\Omega & 2.56 .00 \\
49.25 .00
\end{array}
\] \\
\hline & & \\
\hline \[
1.00
\] & \[
\begin{array}{ll}
\hline \text { Long. II } 13 \cdot 03.00 \\
\text { Lat.S. } & 39 \cdot 54 \cdot 00
\end{array}
\] & \\
\hline \[
\begin{array}{r}
.25 \\
000
\end{array}
\] & \[
\begin{array}{ll}
\begin{array}{ll}
\text { Loxg. II } & 26 \cdot 00 \\
\text { Lat. S. } & 33 \cdot 41.00
\end{array}
\end{array}
\] & \[
33 \cdot 39 \cdot 40
\] \\
\hline 30 & \begin{tabular}{l}
Long. 824.24 .00 \\
Lat. S. \(27 \cdot 45 \cdot 00\)
\end{tabular} & \[
\begin{array}{|c|c|}
\hline 824 \cdot 27 \cdot 00 \\
27 \cdot 46 \cdot 00
\end{array}
\] \\
\hline & Lat.S. \({ }_{12}\). 36 .00 & \[
\begin{array}{lr}
8 & 9 \cdot 02 \cdot 28 \\
& 12 \cdot 34 \cdot 13
\end{array}
\] \\
\hline . 00 & \begin{tabular}{l}
Long. ४ \(7.05 \cdot 40\) \\
Lat. S. 10.23 .00
\end{tabular} & \[
\begin{array}{r}
8 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

Book III. of Natural Pbilofophy.
which the Comet defrribes. And from the tranfverfe diameter given the periodic time of the Comet is alfo given. Q.E.I. But the periodic times of the revolutions of Comets, and the tranfverfe diameters of their orbits, cannot be accurately enough determin'd, but by comparing Comets together which appear at different times. If after equal intervals of time, feveral Comets are found to have defcrib'd the fame orbit, we may thence conclude, that they are all but one and the fame Comet revolv'd in the fame orbit. And then from the times of their revolutions, the tranfverfe diameters of their orbits will be given; and from thofe diameters the elliptic orbits themfelves will be determin'd.

To this purpofe, the trajectories of many Comets ought to be computed, fuppofing thofe trajetories to newitc be parabolic. For fuch trajectories will always nearly agree with the phenomena, as appears not only from the parabolic trajectory of the Comet of the year 1680, which I compar'd above with the obfervations, but likewife from that of the notable Comet, which appear'd in the years 1664 , and 1665 , and was obferv'd by Hevelius; who, from his own obfervations, calculated the longitudes and latitudes thereof, though with little accuracy. But from the fame obfervations Dr. Halley did again compute its places; and from thofe new places determin'd its trajectory; finding its afcending node in II \(21^{\circ} \cdot 13^{\prime} \cdot 55^{\prime \prime}\); the inclination of the orbit to the plane of the ecliptic \(21^{\circ} .18^{\prime} .40^{\prime \prime}\); the diftance of its perihelion from the node, eftimated in the Comet's orbit \(49^{\circ} \cdot 27^{\prime} \cdot 30^{\prime \prime}\). its perihelion in \(\Omega 8^{\circ} \cdot 40^{\prime} \cdot 30^{\prime \prime}\); with heliocentric latitude fouth, \(16^{\circ}\). o1'. \(45^{\prime \prime}\); the -sur Comet to have been in its perihelion Nov. \(24^{\text {d }}\). 1 \(^{\text {h }} \cdot 52^{\prime}\); P. M. equal time at London, or \(13^{\text {h }}\). \(8^{\prime}\), at Dantzick, O. S. and that the latus rectum of the parabola was 410286 fuch parts as the Sun's mean diffance from the Earth is fuppos'd to contain 100000 . And how nearly the places of the Comet computed in this orbit agree with the obfervations, will appear from the as:nexed table, calculated by Dr. Halley.

In February, the beginning of the year \(166 \rho\). the ift Star of Aries, which I hall hereafter call \(\gamma\), was in \(\boldsymbol{r}\) \(28^{\circ} .30^{\prime}\). \(15^{\prime \prime}\), with \(7^{\circ} .8^{\prime} .58^{\prime \prime}\). north lat. The 2 d Star of Aries was in \({ }^{2} 29^{\circ} .17^{\prime}\). \(18^{\prime \prime}\), with \(8^{\circ} .28^{\prime} .16^{\prime \prime}\). north lat. And another Star of the feventh magnitude which I call A, was in \(28^{\circ} .24^{\prime} \cdot 45^{\prime \prime}\), with \(8^{\circ} .28^{\prime} \cdot 33^{\prime \prime}\), morth lat. The Comet \(\mathrm{Feb} .7^{\mathrm{d}} \cdot 7^{\mathrm{h}} \cdot 30^{\prime}\), at Paris (that is Feb. \(7^{\mathrm{d}} \cdot 8^{\mathrm{h}} \cdot 37^{\prime}\), at Dantzick) O. S. made a triangle with thofe Stars \(\gamma\) and A , which was right-angled in \(\gamma\). And the diftance of the Comet from the Star \(\gamma\) was equal to the diftance of the Stars \(\gamma\) and A, that is \(1^{\circ}\). \(19^{\prime} \cdot 46^{\prime \prime}\), of a great circle; and therefore in the parallel of the latitude of the Star \(\gamma\) it was \(1^{\circ} \cdot 20^{\prime} \cdot 26^{\prime \prime}\). Therefore if from the longitude of the Star \(\gamma\) there be fubducted the longitude \(1^{\circ} .20^{\prime} .26^{\prime \prime}\), there will remain the longitude of the Comet \({ }^{\prime} 27^{\circ} \cdot 9^{\prime} \cdot 49^{\prime \prime}\). M. Auzout, from this obfervation of his, placed the Comet in \({ }^{\mathbf{r} 27^{\circ}} \mathrm{o}^{\prime}\), nearly. And by the fcheme in which Dr. Hooke delineated its motion, it was then in \(r 26^{\circ} .59^{\prime} \cdot 24^{\prime \prime}\). I place it in \(\gamma_{27^{\circ}}\). \(4^{\prime} \cdot 46^{\prime \prime}\), taking the middle between the two extremes.
From the fame obfervation, M. Axzout made the latitude of the Comet at that time, \(7^{\circ}\) and \(4^{\prime}\) or \(5^{\prime}\) to the north. But he had done better to have made it \(7^{\circ} \cdot 3^{\prime} \cdot 2^{\prime \prime \prime}\), the difference of the latitudes of the Comet and the Star \(\gamma\) being equal to the difference of the longitude of the Stars \(\gamma\) and A.
 at Dantzick, the diftance of the Comet from the Star A, according to Dr. Hooke's obfervation, as was delineated by himfelf in a fcheme, and alfo by the obfervations of M. Auzout, delineated in like manner by M. Petit, was a sth part of the diftance between the Star A and the firft Star of Aries, or \(15 \cdot 57^{\prime \prime}\); and the diftance of the Comet from a right line joining the Star A and the firft of Aries, was a fourth part of the fame sth part, that is \(4^{\prime}\). And therefore the Comet was in \(r 2^{\circ} .29^{\prime} .46^{\prime \prime}\), with \(8^{\circ} .12^{\prime} .36^{\prime \prime}\), north lat.

Mar:

\section*{Book III. of Natural Pbilofophy:}

379
Mar. 1. \(7^{\text {h. }}\). \(0^{\prime}\), at London, that is, Mar. 1. \(8^{\text {b }}\). 16', at Dantzick, the Comet was obferv'd near the 2d Star in Aries, the diftance between them being to the diftance between the firft and fecond Stars in Aries, that is, to \(1^{\circ} \cdot 33^{\prime}\), as 4 to 45 according to Dr. Hooke, or as 2 to 23 according to M. Gottignies. And therefore the diftance of the Comet from the 2 d Star in Aries was 8'. 16", according to Dr. Hooke, or \(8^{\prime}\). \(5^{\prime \prime}\), according to M. Gottignies; or taking a mean between both \(8^{\prime}\). \(10^{\prime \prime}\). But according to M. Gottignies, the Comet had gone beyond the 2d Star of Aries, about a 4th or a 5 th part of the fpace, that it commonly went over in a day, to wit, about \(\mathrm{I}^{\prime}\). \(35^{\prime \prime}\); (in which he agrees very well with M. Auzout) or according to Dr. Hooke, not quite fo much, as perhaps only \(1^{\prime \prime}\). Where- tal ver fore if to the longitude of the 1 ft Star in Aries, we add \(\mathrm{r}^{\prime}\), and \(8^{\prime}\). \(10^{\prime \prime}\), to its latitude, we fhall have the longitude of the Comet \(r\) 29 \(9^{\circ}\).18', with \(8^{\circ} \cdot 36^{\prime} \cdot 26^{\prime \prime}\), north lat.

Mar. 7. \(7^{\text {h }} \cdot 30^{\text {', }}\), at Paris (that is, Mar. 7. \(8^{\text {h }}\). \(37^{\text {', }}\) at Dantzick) from the obfervations of M. Auzout, the diftance of the Comet from the 2d Star in Aries, was equal to the diftance of that Star from the Star A, that is, \(5 z^{\prime} .29^{\prime \prime}\); and the difference of the longitude of the Comet and the 2d Star in Aries was \(45^{\prime}\), or \(46^{\prime}\), or taking a mean quantity \(45^{\prime} \cdot 30^{\circ}\). And therefore the Comet was in \(80^{\circ} \cdot 2^{\prime} .48^{\prime \prime}\). From the fcheme of the obfervations of M. Auzout, conftructed by M. Petit, Hevelins colletted the latitude of the Comet \(8^{\circ} .54^{\prime}\). But the engraver did not rightly trace the curvature of the Comet's way toward the end of the motion: and Hevelins in the fcheme of M. Auzout's obfervations which he conftructed himfelf, corretted this irregular curvature, and fo made the latitude of the Comet \(8^{\circ} \cdot 55^{\prime} \cdot 30^{\prime \prime}\). And by farther correcting this irregularity the latitude may become \(8^{\circ} .5 \sigma^{\prime}\), or \(8^{\circ}\). \(57^{\circ}\).

This Comet was alfo feen Mar. 9, and at that time its place muft have been in \(\boldsymbol{\gamma}^{\circ}\). \(18^{\prime}\) with \(9^{\circ} \cdot 3^{\prime} \frac{1}{2}\) north lat. nearly.

This Comet appeared three months together, in which space of time it travell'd over almoft fix figns, and in one of the days thereof defcrib'd almolt 20 deg . Its courfe did very much deviate from a great circle, bending towards the north, and its motion towards the end from retrograde became direct. And notwithftanding its courfe was fo uncommon, yet by the table it appears that the theory, from beginning to end, agrees with the obfervations no lefs accurately than the theories of the Planets ufually do with the obfervations of them. But we are to fubduct about \(2^{\prime}\). when the Comet was fwifteft, which we may effect by taking off \(12^{\prime \prime}\) from the angle between the afcending node and the perihelion, or by making that angle \(49^{\circ}\). \(27^{\prime} .18^{\prime \prime}\). The annual parallax of both thefe Comers (this and the preceding) was very confpicuous, and by its quantity demonftrates the annual motion of the Earth in the orbis magnus.

This theory is likewife confirm'd by the motion of that Comet, which in the year 1683 appear'd retrograde, in an orbit whofe plane contain'd almoft a right angle with the plane of the ecliptic, and whofe afcending node (by the computation of Dr. Halley) was in " \(23^{\circ} .23^{\prime}\); the inclination of its orbit to the ecliptic \(83^{\circ}\). \(11^{\prime}\); its perihelion in \(1125^{\circ} .29^{\prime} .30^{\prime \prime}\); its perihelion diftance from the Sun 56020 of fuch parts as the radius of the orbis magnus contains 100000; and the time of its perihelion Fuly \(2^{\mathrm{d}} \cdot 3^{\mathrm{h}}: 50^{\prime}\). And the places thereof computed by Dr. Halley in this orbit, are compar'd with the places of the fame ob: ferv'd by Mr. Flamfteed, in the following table.

This theory is yet further confirm'd by the motion of that retrograde Comet, which appear'd in the year 1682. The afcending node of this (by Dr. Halley's computation) was in \(821^{\circ} .16^{\prime} .30^{\prime \prime}\); the inclination of
its orbit to the plane of the ecliptic \(17^{\circ} .5 \sigma^{\prime} .00^{\prime \prime}\); its perihelion in \({ }^{\text {m }} 2^{\circ} .52^{\prime} .50^{\prime \prime}\); its perihelion diftance from the Sun \(58 ; 28\).parts, of which the radius of the orbis magnus contains 100000 ; the equal time of the \(\mathrm{C}_{0}\). met's being in its perihelion Sept. \(4^{\text {d. }} \cdot 7^{\text {h}} \cdot 39^{\prime}\). And its places, collected from Mr. Flamfteed's oblervations, are compar'd with its places computed from our theory, in the following table.

This

This theory is alfo confirmed by the retrograde motion of the Comet that appeared in the year 1723. The afcending node of this Comet (according to the computation of Mr. Bradley, Savilian Profeffor of Aftronomy at \(O x f\) for \(d\)) was in \(r 14^{\circ}\). 16 \(6^{\prime}\). The inclination of the orbit to the plane of the ecliptic \(49^{\circ} .59^{\prime}\). Its perihelion was in \(\gamma^{12} 2^{\circ}\). \(15^{\prime} .20^{\prime \prime}\). Its perihelion diftance from the Sun 998651 parts, of which the radius of the orbis magnus contains 1000000, and the equal time of its perihelion September \(16^{d} \cdot 16^{\mathrm{h}} \cdot 10^{\prime}\). The places of this Comet computed in this orbit by Mr. Bradley, and compared with the places obferved by himfelf, his uncle Mr. Pound, and Dr. Halley, may be Ju two feen in the following table.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Eq. Time. & Comet & obr. & & & & \\
\hline & & & & & & \\
\hline Oa. 9.8.6 5 & & & 7.21 .26 & & & \\
\hline \({ }^{10.6 .212}\) & & & & & & \\
\hline & 4 & & \[
\begin{aligned}
& 5 \cdot 40.19 \\
& 5 \cdot 0.37
\end{aligned}
\] & & & \\
\hline 15.6 & 4.4 & 15.40 & 4.47 & & & \\
\hline 21.6 & 4.2 & 19. & 4. 2.21 & & & \\
\hline 22.6 & 3.59 & 20.8 & 3.59.10 & & & \\
\hline & & & & & & \\
\hline 30.6 & & 22.32.28 & 3.58.17 & & & \\
\hline 5 & 4.16 .3 & 23.38.33 & 4.16 .2 & & & \\
\hline 8.7.
14.6. & 4.29.36 & 边 \(\begin{aligned} & 24.4 .30 \\ & 24.48 .46\end{aligned}\) & 4.29.54 & 24 & & \\
\hline & & & & & & \\
\hline Dec. 7.6 & 8. & & 8. & & & \\
\hline
\end{tabular}

From thefe examples it is abundantly evident, that the motions of Comets are no lefs accurately reprefented by our theory, than the motions of the Planets commonly are by the theories of them. And therefore, by means of this theory, we may enumerate the orbits of Comets, and fo difcover the periodic time of a Comet's revolution in any orbit ; whence at laft we

\section*{384} Mathematical Principles Book III. thall have the tranfverfe diameters of their elliptic orbits and their aphelion diftances.

That retrograde Comet which appear'd in the year 1607, defcrib'd an orbit whofeafcending node (according to Dr. Halley's computation) was in \(\succ^{20} 0^{\circ} \mathbf{2 1}\); and the inclination of the plane of the orbit to the plane of the ecliptic \(17^{\circ} .2^{\prime \prime}\); whofe perihelion was in \(=2^{\circ}\). \(1 \sigma^{\prime}\); and its perihelion diftance from the Sun 58680 of fuch parts as the radius of the orbis magnus contains 100003. And the Comet was in its perihelion OCtober \(16^{4} \cdot 3^{\text {h }} \cdot 5^{\circ}\). Which orbit agrees very nearly with the orbit of the Comet which was feen in 1682. If thefe were not two different Comets, but one and the fame, that Comet will finifh one revolution in the fpace of 75 years. And the greater axe of its orbic will be to the greater axe of the orbis magnus, as \(\sqrt{3: 75 \times 75}\) to 1 , or as 1778 to 100, nearly. And the aphelion diftance of this Comer from the Sun will be to the mean diftance of the Earth from the Sun as about 35 to 1 . From which data it will be no
fura hard matter to determine the elliptic orbit of this Comet. But thefe things are to be fuppofed, on condition, that after the face of 75 years the fame \(\mathbf{C o}\) met fhall return again in the fame orbit. The other
altur - Comets feem to afcend to greater heights, and to require a longer time to perform their revolutions.

But becaufe of the great number of Comets, of the great diftance of their aphelions from the Sun, and of the flownefs of their motions in the aphelions, they will, by their mutual gravitations, difturb each other: fo that their eccentricities and the times of their revolutions will be fometimes a little increafed, and fometimes diminifhed. Therefore we are not to expect that the fame Comet will return exaetly in the fame orbit, and in the fame periodic times. It will be fufficient if we find the changes no greater, than may arife from the caufes juft fooken of.

And hence a reafon may be affign'd why Comets are not comprehended within the limits of a zodias as the Planers are; but, being confin'd to no bounds, are with various motions difpers'd all over the heavens; namely, to this purpofe, that in thcir aphelions, where their motions are exceeding now, receding to greater diftances one from another they may fuffer lefs difturbance from their mutual gravitations. And hence it is, that the Comets which defcend the loweft, and therefore move the floweft in their aphelions, oughr muesitalfo to afcend the higheft. - Li mas sjause

The Comet which appear'd in the year 1680. was in its perihelion lefs diftant from the Sun than by a fixth part of the Sun's diameter: and becaufe of its extreme velocity in that proximity to the Sun, and fome denfity of the Sun's atmofphere, it muft have fuffer'd fome refiffance and retardation; and therefore, being attracted fomething nearer to the Sun in every revolution will at laft fall down upon the body of luacia aby the Sun. Nay in its aphelion, where it moves the no floweft, it may fomerimes happen to be yet farther retarded by the atrractions of other Comets, and in confequence of this retardation defcend to the Sun. So fixed Stars that have been gradually wafted by the light and vapours emitted from them for a long time, may be recruited by Comets that fall upon them; and vuctilumefrom this frefh fupply of new fewel, thofe old Stars, acquiring new fplendor, may pats for new Stars. Of this kind are fuch fixed Stars as appear on a fudden and fhine with a wonderful brightnefs at firft, and afterwards vanif by little and little. Such was that Star which appeared in Caflopecias chair; which Cornelius Gemma did not fee upon the 8th of November 1572, though he was obferving that part of the heavens upon that very night, and the skie was perfectly ferene; but the next night (Nov. 9.) he faw it shining much brighter than any of the fixed Stars, henduide \(C\) s and
ebrevo wile
decal Brahe law it upon the lIth of the fame month when it hone with the greatest luftre ; and from that time he oblerv'd it to decay by little and little; and in 16 months time it entirely difappear'd. In the month of November, when it firf appeared, its light was equal to that of Venus. In the month of December its light was a little diminifhed, and was now become equal to that of Jupiter. In January \(1 \overline{573}\). it was less than Jupiter and greater than Sirius, and about the end of February and the beginning of March became equal to that Star. In the months of April and May it was equal to a Star of the 2 d magnitude. In \(\mathcal{F u n e}^{\prime}\), \(\mathcal{F}_{\text {ul }}\) and \(A u g u / t\) to a Star of the 3 d magnitude. In Septembet, October and November to thole of the \(4^{\text {th }}\) mag. nitude, in December and January 1574. to thole of the 5 th, in February to thole of the 6th magnitude, and in March it entirely vanished. Its colour at the Homes beginning was clear, bright and inclining to white, afterwards it turned a little yellow, and in March \(1573^{\circ}\) it became ruddy like Mars or Aldebaran; in May it turned to akin of dusky whiteners like that we observe in Saturn, and that colour it retained ever after, but growing always more and more obscure. Such alfo was the Star in the right foot of Serpentarims, which Kepler's fcholars firft obferved September 30. O. S. 1604 , with a light exceeding that of 'Jupiter, tho' the night before it was not to be feen. And from that time it decreas'd by little and little, and in 15 or 16 months entirely difappeared. Such a new Star, appearing with an unufual iplendor, is faid to have moved Hipparchus to observe, and make a catalogue of, the fixed Stars. As to thole fixed Stars that appear and difappear by turns, and encreafe lowly and by degrees, and farce ever exceed the Stars of the 3 d magnitude, they feem to be of another kind, which revolve about their axes, and having a light and a dark fade, shew thole two different

Book III. of Natural Philofophy. 387 different fides by turns. The vapours which arife from the Sun, the fixed Stars, and the tails of the Comets, may meet at laft with, and fall into, the atmofpheres of the Planets by their gravity ; and there be condenfed and turned into water and humid fpi-1mmedes rits, and from thence by a flow heat pafs gradually into the form of falts, andifulphurs, and tinetures, and lomud, and clay, and rand, and fones, and coral, and other terreftial fubftances. avenc juiedval

\section*{General Scholium:}

The hypothefis of Vortices is prefs'd with many difficulties. That every Planet by a radius drawn to the Sun may defcribe areas proportional to the times of defcription, the periodic times of the feveral parts of the Vortices mould oblerve the duplicate proportion of their diftances from the Sun. But that the periodic times of the Planets may obtain the fefquiplicate proportion of their diftances from the Sun, the periodic times of the parts of the Vortex ought to be in the fefquiplicate proportion of their diftances. That the fmaller Vortices may maintain their leffer revolutions about Satwrn, Fupiter, and other Planets, and fwim quietly and undifturb'd in the greater Vortex of the Sun, the periodic times of the parts of the Sun's Vortex fhould be equal. But the rotation of the Sun and Planets about their axes, which oughe to correfpond with the motions of their Vortices, recede far from all thefe proportions. The motions of the Comets are exceeding regular, are govern'd by the fame laws with the motions of the Planets, and can by no means be accounted for by the hypothefis of Vortices. For Comets are carry'd with very eccentric motions through all parts of the heavens indifferently, with a freedom that is incompatible with the notion of a Vortex.

Bodies

Bodics, projected in our air, fuffer no refiftance but from the air. Withdraw the air, as is done in Mr. Boyle's vacuum, and the refiftance ceafes. For in this void a bit of fine down and a piece of folid gold defcend with equal velocity. And the parity of reafon mult take place in the celeftial fpaces above the Earth's atmofphere; in which fpaces, where there is no air to rffirt their motions, all bodies will move with the greateft freedom; and the Planets and Comets will conftantly purfue their revolutions in orbits given in kind and pofition, according to the laws above explain'd. But though thefe bodies may indeed perfevere in their orbits by the mere laws of gravity, yet they could by no means have at firft deriv'd the re-: gular pofition of the orbits themfelves from thofe laws.

The fix primary Planets are revolv'd about the Sun, in circles concentric with the Sun, and with motions direcied towards the fame parts and almoft in the fame plane. Ten Moons are revolv'd about the Earth, Jupiter and Saturn, in circles concentric with them, withthe fame direction of motion, and nearly in the planes of the orbits of thofe Planets. But it is not to be conceived that mere mechanical caufes could give birth to fo many regular motions: fince the Comers range over all parts of the heavens, in very eccentric orbits. For by that kind of motion they pafs eafily through the orbs of the Planers, and with great rapidity; and in their aphelions, where they move the flowelt, and are detain'd the longeft, they recede to the greateft diftances from eech other, and thence fuffer the leaft difturbance from their mutual attractions. This moft beautiful Syftem of the Sun, Planets and Comets, could only proceed from the counfel and dominion of an intelligent and powerful bsing. And if the fixed Stars are-the centers of other like fyftems, thefe being form'd by the like wife counfel, mult be all fubject to the dominion

Book III. of Natural Plilofophy.
of One ; efpecially, fince the light of the fixed Stars is of the fame narure with the light of the Sun, and from every fyftem light paffes into all the other fyftems. And left the fyftems of the fixed Stars Mould, by their gravity, fall on each other mutually, he hath placed thofe Syftems at immenfedifances one from another.

This Being governs all things, not as the foul of the world, but as Lord over all: And on account of his dominion he is wont to be called Lord God \(\pi<v \tau 0-\) x \(\rho \dot{\alpha} \tau \omega \rho\), or Univerfal Ruler. For God is a relative word, and has a refpect to fervants; and Deity is the dominion of God, not over his own body, as thofe imagine who fancy God to be the foul of the world, but over fervants. The fupreme God is a Being eternal, infinite, abrolutely perfect; but a being, however perfect, without dominion, cannot be faid to be Lord God; for we fay, my God, your God, the God of I/rael, the God of Gods, and Lord of Lords; but we do not fay, my Eternal, your Eternal, the Eternal of I/rael, the Eternal of Gods; we do not fay, my Infinite, or my Perfect: Thefe are titles which have no refpect to fervants. The word God ufually a fignifies Lord; but every lord is not a God. It is the dominion of a fpiritual being which conftitutes a God; a true, fupreme or imaginary dominion makes a true, fupreme or imaginary God. And from his true dominion it follows, that the true God is a Living, Intelligent and Powerful Being; and from his other perfections, that he is Supreme or moft Perfect. He is Eternal and Infinite, Omnipotent and Omnifcient ; that is, his duration reaches from Eternity to Eternity; his

\footnotetext{
\({ }^{2}\) Dr. Pocock derives the Latin word Deus from the Arabic du, (in the oblique cafe di,) which fignifies Lord. And in this fenfe Princes are called Gods, P \(\int a l\). Ixxxii. ver. 6. and Jobn x. ver. \(35 \cdot\) And Moles is called a God to his brother Aaron, and a God to Pb.araob (Exod. iv. ver. 16. and vii. ver. 8. And in the fame fenfe the fouls of dead Princes were formerly, by the Heathens, called gods, but falfly, becaufe of their want of dominion.
} and knows all things that are or can bedone. He is not Erernity or Infinity, but Eternal and Infinite; he is not Duration or Space, but he endures and is prefent. He endures for ever, and is every where prefent; and by exifting always and every where, he conflitutes Duration and Space. Since every particle of Space is al2vays, and every indivifible moment of Duration is every wwhere, certainly the Maker and Lord of all things cannot be never and no where. Every foul that has perception is, though in different times and in different organs of fenfe and motion, fill the fame indivifible perfon. There are given fucceffive parts in duration, co-exiftent parts in fpace, but neither the one nor the other in the perfon of a man, or his thinking principle; and much lefs can they be found in the thinking fubftance; of God. Every man, fo far as he is a thing that has perception, is one and the fame man during his whole life, in all and each of his organs of fenfe. God is the fame God, always and every where. He is omniprefent, not virtually only, but alfo fubftantially; for virtue cannot fubfift without fubftance. In him \({ }^{\mathrm{b}}\) are all things contained and moved; yet neither affets the other: God fuffers nothing from the motion of bodies; bodies find no refiftance from the omniprefence of God. 'Tis allowed by all that the fupreme God exifts neceffarily; and by the fame neceffity he exifts

\footnotetext{
\({ }^{6}\) This was the opinion of the Ancients. So Pytbagoras in Cicer. de Nat. Deor. lib. i. Tbales, Anaxagoras, Virgil, Georg. lib. iv. ver. 220. and Æneid. lib. vi. ver. 721 . Pbilo Ailegor. at the beginning of lib. i. Aratus in his Phænom. at the beginning. So alfo the facred Writers, as St . Paul, Aits xvii. ver. 27, 28. St. Fobn's Gofp. chap. xiv. ver. 2. Mofes is Deut. iv. ver. 39. and x. ver. 14. David, Pfal. cxxxix. ver. 7, 8, 9. Solomon, 1 Kings viii. ver. 27. Job xxii. ver. 12, 13, 14. Feremiab xxiii. ver. 23, 24 . The Idolaters fuppofed the Sun, Moon and Stars, the Souls of Men, and other parts of the world, to be parts of the fupreme God, and therefore to be worhigped: but erroneoully.
}
always and every where. Whence alfo he is all fimilar, all eye, all ear, all brain, all arm, all power to perceive, to underftand, and to act; but in a manner not at all human, in a manner not at all corporeal, in a manner utterly unknown to us. As a blind man has no idea of colours, fo have we no idea of the manner by which the all-wife God perceives and underftands all things. He is utterly void of all body and bodily figure, and can therefore neither be feen, nor heard, nor touched; nor ought he to be worflipped under the reprefentation of any corporeal thing. We have ideas of his attributes, but what the real fubftance of any thing is, we know not. In bodies we fee only their figures and colours, we hear only the founds, we touch only their outward furfaces, we fmell only the fmells, and tafte the favours; but their inward fubitances are not to be known, either by our fenfes, or by any reflex act of our minds; much lefs then have we any idea of the fubftance of God. We know him only by his moft wife and excellent contrivances of things, and final caufes; we admire him for his perfections; but we reverence and adore him on account of his dominion. For we adore him as his fervants; and a God without dominion, proyidence, and final caufes, is nothing elfe but Fate and Nature. Blind metaphyfical neceffity, which is certainly the fame always and every where, could produce no variety of things. All that diverlity of natural things which we find, fuited to different times and places, could arife from nothing but the ideas and will of a Being neceffarily exifting. But by way of allegory, God is faid to fee, to Speak, to laugh, to love, to hate, to defire, to give, to receive, to rejoice, to be angry, to fight, to frame, to work, to build. For all our notions of God are taken from the ways of mankind, by a certain fimilitude which, though not perfect, has fome likenefs however. And thus much concerning God; to difCc 4 coyrfe
courfe of whom from the appearances of things, does certainly belong to Natural Philofophy.

Hitherto we have explain'd the phanomena of the heavens and of our fea, by the power of Gravity, but have not yet affign'd the caufe of this power. This is certain, that it muft proceed from a caufe that penetrates to the very centers of the Sun and Planets, without fuffering the leaft diminution of its force; that operates, not according to the quantity of the furfaces of the particles upon which it acts, (as mechanical caufes ufe to do, but according to the quantity of the folid matter which they contain, and propagates its virtue on all fides, to immenfe diftances, decreafing always in the duplicate proportion of the diftances. Gravitation towards the Sun, is made up out of the gravitations towards the feveral particles of which the body of the Sun is compos'd; and in receding from the Sun, decreafes accurately in the duplicate proportion of the diftances, as far as the orb of Saturn, as evidently appears from the quiefcence of the aphelions of the Planets; nay, and even to the remoteft aphelions of the Comets, if thofe apheiions are alfo quiefcent. But hitherto I have not been able to difcover the caufe of thofe properties of gravity from phænomena, and I frame no hypothefes. For whatever is not deduc'd from the phenomena, is to be called an hypothefis; and hypothefes, whether metaphyfical or phyfical, whether of occult qualities or mechanical, have no place in experimental philofophy. In this philofophy particular propofitions are inferr'd from the phenomena, and afterwards render'd general by induction. Thus it was that the impenetrability, the mobility, and the impulfive force of bodies, and the laws of motion and of gravitation, were difcovered. And to us it is enough, that gravity does really exift, and act according to the laws which we have explained, and abundantly ferves to account for all the motions of the celeftial bodies, and of our fea.

And now we might add fomething concerning a certain moft fubtle Spirit, which pervades and lies hid in all grofs bodies; by the force and action of which Spirit, the particles of bodies mutually attract one another at near diftances, and cohere, if contiguous; and electric bodies operate to greater diftances, as well repelling as attracting the neighbouring corpufcles; and light is emitted, refletted, refracted; inflected, and hears bodies; and all fenfation is excited, and the members of animal bodies move at the command of the will, namely, by, the vibrations of this Spirit, mutually propagated along the folid filaments of the nerves, from the outward organs of fenfe to the brain, and from the brain into the mufcles. But thefe are things that cannot be explain'd in few words, nor are we furnifh'd with that fufficiency of experiments which is required to an accurate determination and demonftration of the laws by which this electric and elaftic fpirit ofarates.

I N DEX.

\section*{IN \\ DE X.}

The first number denotes the Volume, the fecont the Page; unless where a Section is referred to.

\section*{A.}

䃌Quinoxes, their proceffion the cause of that moion Shewn II, 252
the quantity of that motion computed from the caules II, 320
Air,
its denity at any height, collected by Prop. 22. Book. II. and its denfity at the height of one femidiameter of the Earth Shewn II, 366
its elaftic force, what cause it may be attributed to II, 77
its gravity compared with that of water II, 366
its refintance, collected by experiments of pendulums II, 99; the fame more accusately by experiments of falling bodies, and a Theory II, 160
Angles of contact not all of the fame kind, but forme inf. sitely less than others I: 53

Apsides, their motion fhewn I, Sect. 9. p. 177
Areas which revolving bodies, by radii drawn to the centre of force, defcribe, compared with the times of defrip. ion I, 57, 60, 62, 220, 231
Attraction of all bodies demonfiltrated II, 225
the certainty of this demonstation Shewn II, 203; the cause or manner thereof no where defined by the Author II, 392
As, the mathematical fignification of this word defined I , 50
C.

Centre,
the common center of gravity of many bodies does not alter its fate of motion or reft by the actions of the bodies among themselves I, 27

\section*{I N \(\mathcal{D} E X\).}
the common centre of gravity of the Earth, Sun, and all the Planets is at reft II, 232 ; confirmed by Cor. 2. Prop. 14. Book 3.
the common centre of gravity of the Earth and Moon goes round the orbis magnus II, 235 ; its diftance from the Earth and from the Moon II, 311
Centre of the forces by which revolving bodies are retained in their orbits, how indicated by the defcription of areas I, 63 ; how found by the given velocities of the revolving bodies I, 67
Circle, by what law of centripetal force tending to any given point, its circumference may be defcribed I, \(64,70,73\)
Conic fections, by what law of centripetal force tending to any given point they may be defcribed by revolving bodies I, 93
the geometrical defription of them when the foci are given I, Sect. 4 .
when the foci are not given I, Sect. 5.
when the centres or afymptotes are given I, 132
Comets
a fort of Planets, not meteors II, 331, 360
higher than the Moon, and in the planetary regions II, 323
their diftance how collected very nearly by obfervations II, 324
more of them obferved in the hemifphere towards the Sun, than in the oppofite hemifphere; and how this comes to pafs II, 330
thine by the Sun's light reflected from them II, 330
furrounded with vaft atmofpheres II, 327,33I
thofe which come neareft to the Sun probably the leaft, II, 374
why they are not comprehended within a zodiack, like the Planets, but move differently into all parts of the Heavens II, 385
may fometimes fall into the Sun, and afford a new fupply of fire II, 385
the ufe of them hinted II, 371
move in conic fections, having their foci in the Sun's centre, and by radij drawn to the Sun defcribe areas proportional to the times. Move in ellipfes if they come round again in their orbits, but thefe ellipies will be near to parabolas II, 332
Comet's parabolic trajectory found from three oblervations given II, 340 ; corrected when found II, 375
Comet's place in a parabola found to a given time II, 333 ; I, 143
Comet's velocity compared with the velocity of the Planets II, 332
Comets Tails
directed from the Sun II, 364
brightet

\section*{I N D EX.}
brighteft and largeft immediately after their paffage thro' the neighbourhood of the Sun II, 36 r
their wonderful rarity II, 367
their origine and nature II, 327, 509
in what fpace of time they afcend from the heads II, 367
Comet of the years 1664 and 1665
the obfervations of its motion compared with the theory II, 377
Comet of the years 1680 and 1681
obfervations of its motion II, 344
its motion computed in a parabolic orbit II, 350 ; in an elliptic orbit II, 352
its trajectory, and its tail in the feveral parts of its orbit, delineated II, 358
Comet of the year 1682
its motion compared with the theory II, 382
feems to have appeared in the year 1607, and likely to return again after a period of 75 years II, 384
Comet of the year 1683
its motion compared with the theory II, 38 r
Comet of the year 1723
its motion compared with the theory II, 383
Curves diitinguifed into geometrically rational and geometrically irrational I, 148
Curvature of figures how eftimated II, 32 ; II, 267
Cycloid or epicycloid,
its rectification I, 199, 200
its ceveluta I, 204

Cylinder, the attraction of a Cylinder compofed of attracting particles, whofe forces are reciprocally as the fquare of the diftances I, 302

\section*{D.}

Defcent of heavy bodies in vacuo, how much it is II, 240
Defcent or afcent rectilinear, the spaces defcribed, the times of defcription, and the velocities acquired in fuch afcent or defcent, compared, on the fuppofition of any kind of centripetal force \(I\), Sect. 7.
Defeent and afcent of bodies in refirting mediums II, 4, 22, \(24,47,50,145\)

\section*{E.}

Earth,
its dimenfion by Norwood, by Picart, and by Caffini II, 240
its figure difcovered, with the proportion of its diameters, and the meafure of the degrees upon the meridian II, 239, 245
the excefs of its height at the equator above its height at the poles II, 243, 251
its greateft and leaft femidiameter II, 243 ; its mean femidiameter ibid.
the globe of Earth more denfe than if it was entirely water II, 230
the nutation of its axis II, 252

\section*{\(1 N \mathcal{D} E X\).}
the annual motion thereof in the orbis magnus demonftrated II, 380
the eccentricity thereof how much II, 299
the motion of its aphelion how much II, 237
Ellipfis,
by what law of centripetal force tending to the centre of the figure it is defrribed by a revolving body I, 75
by what law of centripetal force tending to the focus of the figure it is defribed by a revolving body \(\mathrm{I}, 79\).

\section*{F.}

Fluid, the definition thereof I, 64
Fluids, the laws of their denfity and compreffion fhewn If, Sect. 5.
their motion in running out at an hole in a veffel determined II, 124
Forces
their compofition and refolution I, 22
attractive forces of fphærical bodies, compofed of particles attrating according to any law, determined I, Sect. 12.
attractive forces of bodies not fphrarical compofed of particles attracting according to any law determined I, Sect. 13.
Force
centrifugal force of bodies on the Earth's æquator, how great II, 240
sentripetal force defined I, 4 .
the abfolute quantity of cen: tripetal force defined I, 6
the accelerative quantity of the fame defined \(i b\).
the motive quantity of the fame defined I, 7
the proportion thereof to any known force how collected I, 66
the invention of the centripetal forces, when a body is revolved in a non-refiftfting fpace 'about an immoveable centre, in any orbit I, Sect. 2. and 3.
the centripetal forces tending to any point by which any figure may be defcribed by 2 revolving body, being given; the centripetal forces tending to any other point, by which the fame figure may be defcribed in the fame periodic time, are alfo given I, 72
the centripetal forces by which any figure is defcribed by a revolving body, being given ; there are given the forces by which a new figure may be defcribed, if the ordinates are augmented or diminifhed in any given ratio, or the angle of their inclination be any how changed, the periodic time remaning the fame \(I\), 77
centripetal forces decreafing in the duplicate proportion of the diftances, what figures may be defcribed by them I, 85, 222
a centripetal force that is reciprocally as the cube of the ordinat:

\section*{I. \(N \mathcal{D} E X\).}
ordinate tending to a vaftly remote centre of force will caufe a body to move in any given conic fection I, 74
2 centripetal force that is as the cube of the ordinate tending to a vafly remote centre of force will caufe a body to move in an hyperbola I, 310

\section*{G.}

God, his Nature II, 389

\section*{Gravity,}
of a different nature from magnetical force II, 225
mutual between the Earth and its parts I, 37
the caufe of it not affigned II, 392
rends towards all the Planets II, 219; from the furfaces of the Planets upwards decreafes in the duplicate ratio of the diftances from the centre II, 229; from the fame downwards decreafes nearly in the fimple ratio of the fame II, 229
cends towards all bodies, and is proportional to the quantity of matter in each II, 225
is the force by which the Moon is retained in its orbit II, 215
the fame proved by an accurate calculus II, 311, 312.
is the force by which the primary Planets and the Satellites of Jupiter and Saturn are retained in their orbits II, 219

\section*{H.}

Heat, an iron rod increafes in length by heat II, 250
of the Sun, how great 2t different diftances from the Sun II, 360
how great in Mercury II, 229
how great in the Comet of 1680 , when in its perihelion II, 360
Heavens
are void of any fenfible refiftance II, 231, 331, 369, and therefore of almoft any corporeal fluid whatever 161, 162
fuffer light to pafs through them without any refraction, II, 362
Hydroftaties, the principles thereof delivered II, Sect. 5 . Hyperbola
by what law of centrifugal force tending from the centre of the figure it is defcribed by a revolving body I, 77
by what law of centrifugal force tending from the focus of the figure it is defcribed by a revolving body I, 82
by what law of centripetal force tending to the focus of the figure it is defcribed by a revolving body \(L\) 8 r
Hypothefes of what kind foever rejected from this philofo: phy II, 393
\(1 N \mathcal{D} E X\).an incurvation of light aboutthe extremities of bodiesobferved by experiments \(I\),316
M.
Magnetic force I, 37 ; II, 79; 225, 313
Mars,
its periodic time II, 210
its diftance from the Sun II, 211
the motion of its aphelion II, 237
Matter,
quantity of matter defined I, 1
its vis infita defined I, 2
its impreffed force defined I, 3
its extenfion, hardnefs, impenetrability, mobility, vis inertice, gravity, how difcovered II, 203
fubtle matter of Dcs-Cartes enquired into II, 107
Mechanical Powers explained and demonftrated I, 38
Mercury,
its periodic time II, 210
its diftance from the Sun II; 211
the motion of its aphclion II, 237
Method
of firt and latir ratios I, Scect. 1 .
of transforming figures into others of the fame analytical order I, 121
of fluxions II, 17
differential II, 333
of finding the quadratures of all curves very nearly true II, 335

\section*{\(I N D E X\).}
of converging feries applied to the folution of difficult problems I, 187,189,302, II, 32, 286
Moon
the figure of its body collected by calculation II, 314
its librations explained II, 238
its mean apparent diameter II, 311
its true diameter, \(i\) ibid.
weight of bodies on its furface ibid.
its denfity ibid.
its quantity of matter ibid.
its mean diftance from the Earth, how many greatef femidiameters of the Earth contained therein ibid. how many mean femidiameters II, 313
its force to move the Sea how great II, 306 ; not perceptible in experiments of pendulums or any ftatical or hydroftatical obfervationsII, 310
its periodic time II, 312
the time of its fynodical revolution II, 266
its motions and the inequalities of the fame derived from their caufes II, \(2 ; 2,298\)
revolves more flowly, in a dilated orbit, when the Earth is in its perihelion; and more fwiftly in the aphelion the fame, its orbit being contracted II, 252, 298,299
revolves more flowly in a dilated orbit when the apogron is in the fyrygies with the Sun; and more fwiftly in a contracted orbit when the apogaon is in the quadratures II, 300
revolves more flowly, in a dilated orbit, when the node is in the fyzygies with the Sun; and more fwifly, in a contracted orbit, when the node is in the quadratures II, 301
moves flower in its quadratures with the Sun, iwifter in the fyzygies; and by a radius drawn to the Earth defcribes an area, in the firtt cafe lefs in proportion to the time, in the laft cafe greater \(\amalg, 252\); the inequality of thofe areas computed II, 263 ; its orbit is more curve, and goes farther from the Earth in the firft cafe; in the laft cale its orbit is lefs curve, and comes nearer to the Earth II, 252 ; the figure of this orbit and the proportion of its diameters collected by computation II, 267 ; a method of finding the Moon's diftance from the Earth by its horary motion ibid.
its apogzon moves mere flowly when the Earth is in its aphelion, more fwiftly in the perihelion II, 253,299
its apogæon goes forward moft fwiftly when in the fyzygies with the Sun ; and goes backward in the quadra. tures II, 253, 301
its eccentricity greatef when * the apogron is in the fyzygies with the Sun ; leit when the fame is in the quadratures II, \(253,3 \mathrm{Ct}\)
its nodes move more flowly when the Earth is in its aphclioq

\section*{\(I N \mathcal{D} E X\).}
aphelion and more fwiftly in the perihelion II, 253, 299
its nodes are at reft in their fyzygies with the Sun, and go back moft fwiftly in the quadratures II, 253
the motions of the nodes and the inequalities of its motions computed from the theory of gravity II, 273 , \(278,283,287\); the fame from a different principle II, 289
the inclination of its orbit to the ecliptic greateft in the fyzygies of the node with the Sun, and leaft in the quadratures I, 245
the variations of the inclination computed from the theory of gravity II, 293, 296
the equations of the Moon's motions for aftronomical ufes II, 299, छึ\%.
the annual equation of the Moon's mean motion II, 299
the firf femi-annual equation of the fame II, 300
the fecond femi-annual equation of the fame II, 301
the firlt equation of the Moon's centre II, 302, I, 149, छ゙:.
the fecond equation of the Moon's centre II, 303
Moon's firt variation II, 271
the annual equation of the mean motion of its apogee II, 299
the femi-annual cquation of the fame II, 301
the femi-annual equation of its eccentricity \(\begin{aligned} & \text { ibid. }\end{aligned}\)
the annual equation of the mean motion of its nodes II, 299
the femi-annual equation of the fame II, 288
the femi-annual equation of the inclination of the orbit to the ecliptic II, 298
the method of fixing the theory of the Lunar motions from obfervations II, 304
Motion, its quantity defined I, 2
Motion abfolute and relative I, 10 ; the feparation of one from the other poffible; demonftrated by an example I, 17
Motion, laws thereof I, 19
Motions, compofition and refolution of them I, 22
Motion of concurring bodies after their reflexion, by what experiments collected I, 33
Motion of bodies.
in eccentric fections Sect. 3.
in moveable orbits Sect 9 .
in given fuperficies, and of the reciprocal motion of pendulums Sect. 10.
Motion of bodies tending to each other with centripetal forces Sect. 11.
Motion of very fmall bodies agitated by centripetal forces tending to each part of fome very great body Sect. 14.

Motion of bodies refifted in the ratio of the velocities II, Sect. 1.
in the duplicate ratio of the velocity II. Sect. 2.

Dd
partly

\section*{\(I N \mathcal{D} E X\).}
partly in the fimple, and partly in the duplicate ratio of the fame II, Sect. 3.
Motion
of bodies proceeding by their ris infita alone in refifting mediums II, 1, 2, 12, 15 , 44, 46, 122
of bodies afcending opdefcending in right lines in refifting mediums, and acted on by an uniform force of gravity II, 4, 22, 24, 47,50
of bodies projected in refifting mediums, and acted on by an uniform force of gravity II, 6, 28
of bodies revolving in refifting mediums II, Sect. 4.
of funependulous bodies in refifting mediums II, Sect. 6 .
Motion and refiltance of fluids II, Sect. 7.
Motion propagated through fluids II, Sect. 8.
Motion of fluids after the manner of a vortex, or circular II, Sect. 9.

\section*{0.}

Ovals for optic ufes, the method of finding them, which Cartefius concealed I, 317; a general folution of Cartefius's problem I, 319
Orbits,
the invention of thofe which are defcribed by bodies going off from a given place with a given velocity, according to a given right line; when the centripetal force is reciprocally as
the fquare of the diftance and the abfolute quantity of that force is known I, 90
of thofe which are defcribed by bodies when the centripetal force is reciprocally as the cube of the diftance I, 74, 174, 184
of thofe which are defcribed by bodies agitated by any centripetal forces whatever I, Sect. 8.

\section*{P.}

Parabola, by what law of centripetal force tending to the focus of the figure the fame may be defcribed I, 84
Pendulums, their properties explained I, 803, 212 ; II, Sect. 6.
the diverfe lengths of ifochronous pendulums in different latitudes compared among themfelves, both by obfervations, and by the theory of gravity II, 246 to 251
Place defined, and diftinguifhed into abfolute and relative I, 10
Places of bodies moving in conic fections found to any affigned time I, Sect. 6.
Planets,
not carried about by corporeal vortices II, 197.
Planets primary,
furround the Sun II, 209
move in ellipfes whofe focus is in the Sun's centre II, 234.
by radij drawn to the Sundefcribe areas proportional to the times II, 211, 234

\section*{\(1 N \mathcal{D} E X\).}
revolve in periodic times that are in the fefquiplicate proportion of the diftances from the Sun II, 210
are retained in their orbits by a force of gravity, which refpects the Sun, and is reciprocally as the fquare of the diftance from the Sun's centre II, 214, 219
Planets fecondary,
move in ellipfes having their focus in the centre of the primary II, 252
by radij drawn to their primary defcribe areas proportional to the times II, 206. 208, 212
revolve in periodic times that are in the fefquiplicate proportion of their diftances from the primary II, 206, 208
Planets,
their periodic times II, 210
their diftances from the Sun II, 211
the aphelia and nodes of their orbits do almoft reft II, 236
their orbits determined II, 237
the way of finding their places in their orbits II, 148 to 153
their denfity fuited to the heat they receive from the Sun II, 229
their diurnal revolutions equable II, 238
their axes lefs than the diameters that ftand upon them at right angles II, 239

Problem Keplerian, folved by the trochoid, and by approximations I, 148 to 153
Problem of the ancients, of four lines, related by Pappus, and attempted by Cartefins by an algebraic calculus, folved by a geometrical compofition I, 110
Projectiles move in parabota's when the refiftance of the medium is taken away I, 32 77, 310 II, 34
Projectiles, their motions in refifting mediums II, 6, 28
Pulfes of the air, by which founds are propagated, their intervals or breadths determined II, 180,183 ; there intervals in founds made by open pipes probably equal to twice the length of the pipes II, 183

\section*{Q.}

Quadratures general of oval figures not ta be obtained by finite terms I, 145.
Qualities of bodies how difcovered, and when to be fuppofed univerfal II, 203

\section*{R.}

Refiftance,
the quantity thereof in mediums not continued II, 120 in continued mediums \(\mathrm{II}_{2}\) 243
in mediums of any kind whatever II, 123

D d 2
Refift-

\section*{I \(N \mathcal{D} E X\).}

Refifinnces, the theory thereof confirmed by experiments of pendulums II, 95 to 108
by experiments of falling bodies II, 145 to 162
Refiftance of mediums,
is as their denfity cateris paribus II, 106, 107, 113, 121, 143, 160
is in the duplicate proportion of the velocity of the bodies refifted, cateris paribus II, 11, 96, 113, 121, 143, 154
is in the duplicate proportion of the diameters of fphærical bodies refifted, cateris paribus II, 101, 103, 113, 143
Refiftance of fluids threefold; and arifes either from the inactivity of the fluid matter, or the tenacity of its parts, or friction II, 54; the refiftance found in fluids almolt all of the firlt kind II, 107, 159 and cannot be dininimed by the fubtilty of the parts of the fluid, if the derfity remain II, 16 r
Refiftance of a globe what proportion it bears to that of a cylinder, in mediums not continued II, 117
in compreffed mediums \(\mathrm{II}_{\text {, }}\) 141
Refiltance of a globe in mediums not continued II, 120 ; in comprefied mediums II, 143; how found by experiments II, 145 to 160
Refiltance to a fruftum of a cone, how made the lealt pofrible II, 119

Refiftance, what kind of folid it is that meets with the leaft II, 120
Reft, true and relative I, 10 Rules of philofophy II, 202

\section*{S.}

Satellites,
the greatelt heliocentric elongation of Jupiter's Satellites II, 207
the greateft heliocentric elongation of the Hugenian Satellit from Saturn's centre II, 227
the periodic times of Jupiter's Satellites, and their diftances from his centre II, 206, 207
the periodic times of Saturn's Satellites and their diftances from his centre II, 208, 209
the inequalities of the motions of the Satellites of Jupiter and Saturn derived from the motions of the Moon II, 252
Saturn,
its periodic time II, 210
its diftance from the Sun II, 211
its apparent diameter II, \(\mathbf{z o g}\)
its true diameter II, 228
its attractive force how great II, 227
the weight of bodies on its furface II, 228
its denfity \(i 6\).
its quantity of matter \(i b\).
its perturbation by the approach of Jupiter how great II, 235
the apparent diameter of its ring II, 209

\section*{\(I N \mathcal{D} E X\).}

Sefquiplicate proportion defined I. 52

Shadow of the Earth to be augmented in lunar eclipfes, becaufe of the refraction of the atmofphere II, 304
Sun,
moves round the common centre of gravity of all the Planets II, 232.
the périodic time of its revolution about its axis II, 238
its mean apparent diameter II, 3 II
its true diameter II, 228
its horizontal parallax ibid.
has a menftrual parallax II, 235
its attractive force how great II, 227
the weight of bodies on ite furface II, 228
its denfity ibid.
its quantity of matter ibid.
its force to difturb the motions of the Moon II, 215, 262
its force to move the Sea II 305
Sounds,
their nature explained II, 167 , \(\frac{173,}{182} \underline{176,178,} 180,18 \mathrm{I}\),
not propagated in direetum II, 166; caufed by the agitation of the air II, 18 s
their velocitycomputed \(\mathbf{F I}, \mathbf{1 8 1} \mathbf{1}_{2}\) 182; fome what fwifter by the theory in fummer than in winter II, 183
ceafe immediately, when the motion of the fonorous body ceafes II, 176
how augmented in fpeaking. trumpets II, 183

Space,
abfolute and relative \(I, 10\), 11
not equally full II, 224
Spharoid, the attraction of the fame when the forces of its particles are reciprocally à the fquares of the diftances I, 303.
Spiral cutting all its radij in a given angle, by what law of centripetal force, tending to the centre thereof, it may be defcribed by a revolving body \(\mathrm{I}_{2} 74 ;\) II, \(5_{5}\), 61
Spirit, pervading all bodies and concealed within them, hinted at as required to folve a great many phrnomena of Nature II, 393
Stars
the fixed Stars demonflrated to be at reft II, 236
their twinkling what to be afcribed to II, 363
new Stars, whence they may arife II, 385.
Subftances of all things unknown II, 391

Tides of the Sea derived from their caufe II, 255, 305, 306
Time abfolute and relative \(\mathrm{I}_{2} \mathrm{~g}\), IL.
Time, the aftronomical equation thereof proved by pen-dulum-clocks and the eclipfes of Jupiter's fatellites, \(\underline{\underline{2}}\) 12

\section*{\(I N \mathcal{D} E X\).}
V.

A Vacuum proved, or that all fpaces (if faid to be full) are not equally full II, 224 Velocity, the greateft that a globe falling in a refifting medium can acquire II, 143 Velocities of bodies moving in conic fections where the centripetal force tends to the focus \(I, 67,88,89\)
Venus,
its periodic time H, 210
its diftance from the Sun II, 211
the motion of its aphelion II, 237
Vortices, their nature and confitution exarrined II, Sect.

Waves, the velocity with which
they are propagated on the fuperficies of ftagnant water H, \({ }^{171}\)
Weights of bodies towards the Sun, the Earth, or any PlaSun, the Earth, or any Pla-
net, are, at equal diftances from the centre, as the
quantities of matter in the from the centre, as the
quantities of matter in the bodies II, 220
they do not depend upon the
they do not depend upon the
forms and textures of bodies II, 223
Weights of bodies in different regions of the Eatth found out and compared together II, 245

\section*{W. .}

APPEN

\section*{APPENDIX.}

Among the Explications, (given by a Friend,) of fome Propofitions in this Book, not demonftrated by the Author, the Editor finding thefe following, has thought it proper to annex them. Thus,

ToCor. 2. Prop. 9 I. Book 1. Pag 303:
1.
 O find the force whereby a fphere (\(A d B g\),) on the diameter \(A B\), attracts the body P. (Pl. 19. Fig. i.)

Let \(S A=S B=r, P S=d, P E\) \(=x, \quad P B=a=d+r, \quad P A=\omega\) \(=d-r\); Theref. \(a \alpha=d d-r r\); alfo \(a+a=2 d\), \(a-\alpha=2 r\); Therefore \(a a-a x=4 d r\) : And \(S E=d-x, A E=x-a, B E=a-x\).

Now the force whereby the circle, whofe radius is \(E d\), attratts the body \(P\), is as \(\mathrm{x}-\frac{P E}{P d}\) (by Cor. xed Prop. 90.)

And \(\overline{E d}^{2}=\left(A E \times E B=\overline{S A}^{2}-\overline{S E}^{2}=r-\right.\) \(d d-1-2 d x-x x=)\) - \(a \alpha-\mid-2 d x-x x\). Alfo \(\overline{P d}{ }^{2}\) \(\left.=\overline{\left(E d^{2}\right.}+\overline{E P}^{2}=2 d x-a \alpha-x x+x x=\right) 2 d x\) —a : Th. \(\frac{P E}{P d}=\frac{x}{\sqrt{-a \alpha-1-2 d x}}\). Therefore
\(1-\frac{x}{\sqrt{-a \alpha-2 d x}}\) or \(\dot{x}-\frac{x \dot{x}}{\sqrt{-a \alpha+2 d x}}\) is the flu: xion of the attractive force of the tphere on the body \(P\), or the ordinate of a curve whofe area reprefents that force.

But the fluent of \(\dot{x}\) is \(x\); and the fluent of \(\frac{x \boldsymbol{x}}{\sqrt{-a \alpha-1-2 d x}}\) is \(\frac{a x+d x}{3} d d \sqrt{-a \alpha+2 d x}\)
Tab. 1. Form 4. Caf.2. Ouadr. of Curv.)
Therefore \(x-\frac{a \alpha+\overline{d x}}{3^{d d}} \sqrt{-a \alpha+2 d x}\) is the general expreffion of the area of the curve.

Now let \(x=a\), then area \(=\left(a-\frac{a x+d a}{3 d d} \sqrt{-a x-1-2 d a}\right.\) \(\Rightarrow \frac{d^{3}-1-r^{3}}{3^{d d}}=A\).
Alfo let \(x=\alpha\), then area \(=\left(\alpha-\frac{a \alpha+d \alpha}{3 d d} \sqrt{-a \alpha+2 d_{\alpha}}\right.\) \(\Rightarrow \frac{d^{3}-r^{3}}{3 d d}=B\).

And the force whereby the fphere attracts the body \(P\) is as \(\left(A-B\right.\) or as \(\frac{2 r^{3}}{3 d^{2}} \Rightarrow \frac{2 \overrightarrow{S A}^{3}}{3 \overline{P S}^{2}}\).

\section*{\(A \mathcal{P} E N \mathcal{D} I X\).}
2. The force whereby the fpheroid \(A D B G\), attracts the body \(P\), may, in the fame manner, be found thus. Let \(S C=c\),

The force of a circle whole radius is \(E D\), to attract \(P\), is as \(1-\frac{P E}{P D}\), (by Cor. 1. Prop. 90.) Now \(\overline{E D}^{2}=\frac{\overline{S C}^{2}}{\overline{S A}^{2}} \times A E B=\frac{c c}{r r} \times a \alpha-1-2 d x-x x\) (by the Conics;) and \(\overline{P D}^{2}=\left(\overline{E R}^{2}=\overline{E D}^{2}+\overline{E P}^{2}\right.\) \(=\frac{-a \alpha c c-1-2 d c c x-c c x x}{r r}+x x=\))
\(\frac{\text { aa } a c c-1-2 d c c x+\overline{r r-c c} \times x 2}{r r}\). Therefore (\(1-\) \(\frac{P E}{P D}=\mathrm{I}-\frac{x}{\sqrt{-\frac{a \alpha c c}{r r}+1-\frac{2 d c c}{r r} x-1-\frac{r r-c c}{r r} \times x}}\),
or) \(\dot{x}-\)
\[
x x
\]
\[
\sqrt{-\frac{a \alpha c c}{r r}+\frac{2 d c c}{r r} x+\frac{r r-c c}{r r} x x} \text { is }
\]
the fluxion of the attractive force of the Spheroid on the body \(P\), or the ordinate of a curve whore area is the meafure of that force.
Now the fluent of \(\dot{x}\) is \(x\); and(by Caf.2. Form 8. Tab. 2. Ouad.Cur.) the fluent of
\[
\sqrt{\frac{a \alpha c c}{r r}-\left\lvert\, \frac{2 d c c}{r r} x-1-\frac{r r-c c}{r r} x x\right.}
\]
is \(\left(\frac{-\frac{8 d c c}{r r} s+\frac{4 d c c}{r r} x v-\frac{4 a \alpha c c}{r r} v}{-\frac{4 a \alpha c c}{r r} \times \frac{r r-c c}{r r}-\frac{4 d d c^{+}}{r^{4}}}=\right.\)
\(\frac{-2 d r r s+d r r x v-a \alpha r r v}{a x \times \overline{c c-r r}-d d c c}=\frac{-2 d s+d x v-a x v}{-c c \text { 二dd+rr}}\)
\(\Rightarrow \frac{2 d s-d x v+a x v}{c c-1-d d-r r}\). Therefore \(x+\frac{d x v-a \alpha v-2 d s}{c c+d d-r r}\) is the general expreffion for the area of the curve.
\[
\text { But } v=P D=E R=\sqrt{-\frac{a \alpha c c}{r r} 1-\frac{2 d c c}{r r} x-\frac{c-r r}{r r} x x}
\]
is an ordinate to a conic fection, whofe abfciffa is \(x\); and \(s, \sigma\), the areas \(N M B, N K A\), adjacent to the ordinates \(B M, A K:\) Put \(D=s-\sigma\).

Let \(x=a\), or \(P E=P B=B M\); then \(v=a\), or \(P D\)
\(=P B=B M\), and the area \(=a+\frac{d a a-\alpha a s-2 d s}{c c+d d-r r}=A\). And let \(x=\alpha\), or \(P E=P A=A K\); then \(v=\alpha\), or \(P D\) \(=P A=A K\), and the area \(=\alpha+\frac{d \alpha \alpha-a \alpha \alpha-2 d \sigma}{c c-1 d-r r}=B\).

And the attrative forse of the fpheroid on \(P\), is as \(\left(A-B=a-\alpha+\frac{d \times a \overline{a-\alpha \alpha}-\alpha \alpha \times a-\alpha-2 d \times s-\sigma}{c c+d d-r r}\right.\) \(=2 r+\frac{2 d d r+2 r^{3}-2 d D}{c c-1 d d-r r} \Rightarrow \frac{2 r c c-1-2 d \times 2 d r-D}{c c-1-d d-r r}\).

But \(2 d=(a-1 \Rightarrow B M+A K\), therefore \(2 d r=\) trapezium \(A B M K\); and \(D=(s-\sigma=)\) area \(A K R M B\); therefore \(D-2 d r=\) mixtilinear area \(K R M L K=C\); confequently \(2 d r-D=-C\); therefore \(2 d \times 2 d r-D=-2 d C\); therefore the attractive force of the fpheroid on \(P\), is as \(\frac{2 r c c-2 d C}{c c-d d-r r}=\) \(\frac{2 A S \times \overline{S C}^{2}-2 P S \times K R M K}{\overline{S C}^{2}+\overline{P S}^{2}-\overline{A S}^{2}}\) : Confequently, the attractive force of the fheroid upon the body \(P\) will be to the attractive force of a fphere, whote ciameter is \(A B\), upon the fame body \(P\), as \(\frac{r c c-d C}{c c-1 \cdot d-r r}\) to \(\frac{r^{3}}{3 d d}\), or as \(\frac{A S \times \overline{S C}^{2}-P S \times K R M K}{{\overline{S C^{2}}}^{2}+\overline{P S}^{2}-\overline{A S}^{2}}\) to \(\frac{\overline{A S}^{3}}{3 \overline{P S}^{2}}\).

\section*{To Schol. Prop. 34. Book 2. p. 119. l. 20.}

For let it be propofed to find the vertex of the cone, a fruftum of which has the defcrib'd property.

Let \(C F G B\) be the fruftum, and \(S\) the vertex required. (Pl. 19. Fig. 2.)

Now conceive the medium to confift of particles which ftrike the furface of a body (moving in it) in a direction oppofite to that of the motion; then the refiftance will be the force which is made up of the efficacy of the forces of all the ftrokes.

In any line \(P p\), parallel to the axis of the cone, and meeting its furface in \(p\), take \(p m\) of a given length, for the fpace defrrib'd by each point of the cone in a given time: Draw \(m q\) perpendicular to the fide (\(C F\)) of the cone, and \(q n\) perpendicular to \(p m\).

Therefore the line \(p m\) will reprefent the velocity, or force, with which a particle of the medium ftrikes the furface of the cone obliquely in \(p\).

But the force \(m p\) is equivalent to two forces, the one (\(m q\)) perpendicular, the other (\(p q\)) parallel to the fide of the cone; which laft is therefore of no effect.

And the perpendicular force \(m q\) is equivalent to two forces, the one (\(m n\)) parallel to the axis of the cone, the other (\(q n\)) perpendicular to it; which alfo is deftroy'd by the contrary action of another particle on the oppofite fide of the cone.

There remains only the force \(m n\), which has any effect in refifting or moving the cone in the direction of its axis.

Therefore the whole force of a fingle particle, or the effect of the perpendicular ftroke of a particle, upon the bafe of a circumfrribing cylinder, is to the effect of the oblique ftroke upon the furface of the cone (in \(p\)) as \(m p\) to \(m n\), or as \(\overrightarrow{m p}^{2}\) to \((m p \times m n=)_{m q}\), or as \(\overline{C F}^{2}\) to \(\overline{C H}^{2}\). 2 Now.

Now the number of particles friking in a parallel direction on any furface, is as the area of a plane figure perpendicular to that direction, and that would juft receive thofe ftrokes.

Therefore, the number of particles ftriking again@ the fruftum, that is, againft the furfaces defcrib'd by the rotation of \(F D\), and \(C F\), each particle with the forces \(m p\), and \(m n\) refpectively, is as the circle defrib'd by (\(F D\) or) \(O H\), and the annulus deferibed by \(C H\), that is, as \(\overline{O H}^{2}\) to \(\overline{C O}^{2}-\overline{O H}^{2}\).

But the whole force of the medium in reffifting, is the fum of the forces of the feveral particles.

Therefore, the refiftance of the medium, or the whole efficacy of the force of all the ftrokes againft the end \(F G\) of the fruftum, is to the refiftance againft the convex furface thereof, as (\(m p \times \overline{O H}^{2}\) to \(m n \times\) \(\overline{\mathrm{CO}}^{2}-\overline{\mathrm{OH}}^{2}\) or as \(\overline{\mathrm{CF}}^{2} \times{\overline{\mathrm{OH}}{ }^{2} \text { to } \overline{\mathrm{CH}}}^{2} \overline{\times C O}^{2}-\overline{\mathrm{OH}}\) or as) \(\overline{O H}^{2}\) to \(\frac{\overline{C H}^{2} \times{\overline{\overline{C O}^{2}-\overline{O H}^{2}}}_{\overline{C F}^{2}} \text {. } . ~ . ~ . ~ . ~}{\text {. }}\)
Theref. the whole refiftance of the medium againft the fruftum maybe reprefented by \(\left(\overline{O H}^{2}+\frac{\overline{C H}^{2} \times \overline{\overline{C O}}^{2}-\overline{O H}^{2}}{\overline{C F}^{2}}\right.\) \(=\frac{\overline{C F}^{2} \times \overline{O H}^{2}-\overline{C H}^{2} \times \overline{O H}^{2}+\overline{C H}^{2} \times \overline{O C}^{2}}{\overline{C F}^{2}}\) \(\Rightarrow \frac{\overline{H F}^{2} \times \overline{O H}^{2}+\overline{C H}^{2} \times \overline{U C}^{2}}{\overline{C F}}\), which call \(z\); that is, (putting \(O C=r, O D=2 a, O S=y\), then \(C H=\left(\frac{O C \times F H}{O S}=\right) \frac{2 a r}{y}\), and \(\left.O H=\frac{r y-2 a r}{y},\right)\) \(z=\frac{r^{4}+r^{2} y^{2}-4 a r^{2} y+4 a^{2} r^{2}}{r^{2}-1 y^{2}}\); therefore \(r^{4}+\) \(r^{2} y^{2}-4 a r^{2} y+4 a^{2} r^{2}=r^{2} z-1 y^{2} z\) : Confequently

\section*{APPENTIX.}
vii
\(2 r^{2} \dot{y}-4 a r^{2} \dot{j}=2 y z \dot{j}+-y^{2} \dot{z}+r^{2} \dot{z}\); But \(z\) is a minimum; therefore \(r r y-2\) arr \(=z y\); confequently \((z=) \frac{r^{2} y-2 a r^{2}}{y}=\frac{r^{4}+r^{2} y^{2}-4 a r^{2} y+1-4 a^{2} r^{2}}{r r+y y}\).

Hence \(y y-2 a y=r r\); and making \(O Q=O D\)
\(=a ;\) then \((y-a=) Q S=(\sqrt{r r+a a}=) Q C\).
To the fame Schol.p. 120. l. 10.
On the right-line \(B C\), 'Pl.ri9. Fig 3.) fuppofe the parallelograms \(B G y b, M N v m\), of the leaft breadth, to be erected, whofe hights \(B G, M N\), their diftance \(M b\), and half the fum of their bafes \(\frac{1}{2} M m+\frac{1}{2} B b=a\), are given: Let half the difference of the bafes \(\frac{1}{2} M m-\frac{1}{2} B 6\) be called \(x\) : Let \(G\) and \(N\) be points in the curve \(G N D\); and producing \(b \gamma\), and \(m v\) to \(g\) and \(n\), (fo that \(\gamma g=v n=\) b.) the points \(g\) and \(n\) may alfo be in the fame curve.

Now if the figure \(C D N G B\), revolving about the axis \(B C\), generates a folid, and that folid moves forwards in a rare and elaftic medium from \(C\) towards \(B\), (the pofition of the right-line \(B C\) remaining the fame;) then will the fum of the refiftances againft the furfaces generated by the lineolx \(G g, N n\), be the leaft polfible, when \(\overline{G g}^{4}\) is to \(\overline{N n}^{4}\) as \(B G \times B b\) to \(M N \times M m\).

For the force of a particle on \(G g\) and \(N n\), to move them in the direction \(B C\), is as \(\frac{1}{\widehat{G g}^{2}}\) and \(\frac{1}{\sqrt{N n}^{2}}\); and the number of particles that frike in the fame time on the furfaces generated by \(G g\) and \(N n\), are as (che annuli defrib'd by \(g \gamma\) and \(n v\), that is, as \(B G \times g \gamma\) and \(M N\) \(x n v\), or as) \(B G\) and \(M N\); therefore the refiftances againft thofe furfaces are as \(\frac{B G}{\overline{G g}^{2}}\) to \(\frac{M N}{\overline{N n}^{2}}\), that is (putting \(y\) for \(\overline{G g}^{2}\), and \(z\) for \(\bar{N}^{2}{ }^{2}\),) as \(\frac{B G}{y}\) to \(\frac{M N}{Z}\).

But the furm of thefe refiftances \(\left(\frac{B G}{y}+\frac{M N}{Z^{-}}\right)\)is à minimum. Therefore \(-B G \times \frac{\dot{y}}{y y}-M N \times \frac{\dot{z}}{z z}=0\), or \(M N \times \frac{\dot{z}}{z z}=-B G \times \frac{\dot{y}}{y y}:\) But \(y=\left(\overline{G g}^{2}=\overline{B b}^{2}+\right.\) \(\left.\overline{\gamma g}^{2}=\right) a a-2 a x+x x+b b\); and \(z=\left(\overline{N n}^{2}=\right.\) \(\overline{M m}^{2}+\overline{v n}^{2} \Rightarrow a a-1-2 a x+x x+b b\); therefore \(\dot{j}=2 x \dot{x}\) - \(2 a \dot{x}\), and \(\dot{z}=2 a \dot{x}+2 x \dot{x}\) : confequently \(\frac{M N}{z z} \times 2 \dot{x}\) \(\times \overline{a+x}=\frac{B G}{y y} \times 2 \dot{x} \times \overline{a-x} ;\) or \(\left(\frac{M N}{z z} \times \overline{a+x}=\right)\) \(\frac{M N}{z z} \times M m=\left(\frac{B G}{y y} \times \bar{a}-x=\right) \frac{B G}{y y} \times B b\). Therefore (y) \(\overline{G g}^{+}:(z z) \overline{N n}^{4}:: B G \times B b: M N \times M m\).

Conlequently, that the fum of the refiftances againft the furfaces generated by the lineolx \(G g\) and \(N n\), may be the leaft poffible, \(\overline{G g}^{4}\) muft be to \(\overline{N n}^{4}\) as \(G B 6\) to \(N M m\).

Wherefore, if \(\gamma g\) be made equal to \(\gamma G\), fo that the angle \(\gamma G \mathrm{~g}\) may be \(45^{\circ}\), and the angle \(B G \mathrm{~g} 135^{\circ}\); alfo \(\overline{G g}^{2}=2 \overline{\gamma g}^{2}\), and \(\overline{G g}^{4}=4 \overline{\gamma g}^{4}\); then \(4 \overline{\gamma g}^{4}\) : \(\overline{\mathrm{Nn}^{+}}:: G B 6: N \mathrm{Mm}\); and fince \(G R\) is parallel to \(N n\), and \(B G, B R\) parallel to \(n v, N v\); alfo \(n v=g \gamma\) \(=\gamma G\); it follows that \(\left(n_{v}=\gamma G \Rightarrow B b:\left(N_{v}=\right)\right.\) \(M m:: B G: B R\); therefore \(B 6=\frac{B G \times M m}{B R}\); alfo (\(n v \Rightarrow)_{2} G: N n:: B G: G R .{ }_{2}\) Confequentiy \(\frac{4 \overline{\gamma g}^{+}}{\overline{N n^{4}}} \Rightarrow \frac{4 \overline{B G}^{+}}{\overline{G R}^{4}}=\left(\begin{array}{l}G B 6 \\ N \overline{M m}\end{array}=\frac{\overline{B G}^{2}}{M N \times \overline{B R}}\right.\). Therefore \(4 \overline{B G}^{2} \times B R\) is to \(\overline{G R}^{3}\) as \(G R\) to \(M N\).

\section*{\(\begin{array}{lllll}F & I & N & I & S\end{array}\)}

\section*{(ix) (2)
}

\section*{T H E}

L A W S

OFTHE

\section*{MOON's}

M OTION

\section*{According to \\ GRAVITY.}
- -

\section*{The Laws of the}

\section*{MOONs \\ MOTION.}

N juftice to the editor of this tranflation of Sir Ifaac Newton's Principia, it is proper to acquaint the reader, that it was with my confent, he publifhed an advertifement, at the end of a volume of mifcellanies, concerning a fmall tract which I intended to add to his book by way of appendix; my defign in which was to deliver fome general elementary propofitions, ferving, as I thought, to explain and demonftrate the truth of the rules in Sir Ifaac Newton's Theory of the Moon.

A2 THE

The occafion of the undertaking was merely accidental; for he fhewing me a paper which I communicated to the author, in the year 1717, relăting to the motion of the nodes of the Moon's orbit; I recollected, that the method made ufe of in fettling the Equation for that motion, was equally applicable to any other motion of revolution. And therefore I thought that it would not be unacceptable to a reader of the Principia, to fee the ufes of the faid method explained in the other Equations of the Moon's motion : Efpecially fince the greateft part of the Theory of the Moon is laid down without any proof; and fince thofe propofitions relating to the Moon's motion; which are demonftrated in the Principia, do generally depend upon calculations very intricate and abftrufe, the truth of which is not cafily examined, even by thofe that are moft skilful; and which however might be eafily deduced from other principles.

But in my progrefs in this defign, happening to find feveral general propofitions relating to the Moon's motions, which ferve to determine many things, which have hitherto been taken from the obfervations of Aftronomers: And having
having reafon to think, that the Theory of the Moon might by thefe means, be made more perfect and compleat than it is at prefent ; I retarded the publication of the book, 'till I could procure due fatisfaction by examining obfervations on places of the Moon. But finding this to be a work requiring a confiderable time, not only in procuring fuch places as are proper, but alfo in performing calculations, upon a new method, not yet accommodated to practife by convenient rules, or affifted by tables; I thought it therefore more convenient for the Bookfeller, not to fop the publication of his impreffion any longer upon this account. But that I may in fome meafure, fatisfy thofe who are well converfant in Sir Ifaac Newton's Principia, (and I could wifh that none but fuch would look over theie papers,) that the faid advertifement was not without fome foundation; and that I may remove any fufpicion that the defign isentirely laid afide, I have put together, altho' in no order, as being done upon a fudden refolution, fome of the Propofitions, among many others, that I have by me, which feem chiefly to be wanting in a Theory of the Moon, as it is a fpeculation A. 3 founded

\section*{[6]}
founded on a phyfical caufe; and thofe are what relate to the flating of the mean motions. For altho' it be of little or no ufe in Aftronomy to know the rules for afcertaining the mean motions of the Node or Apogee, fince the fact is all that is wanting, and that is otherwife known by comparing the obfervations of former ages with thofe of the prefent; yet in matter of fpeculation, this is the chief and moft neceffary thing required: fince there is no other way to know that the caufe is rightly affigned, but by fhewing that the motions are fo much and no more than what they ought to be.

But that it may not be altogether without its ufe, I have added all the rules for the equation of the Moon's motion, except two ; one of which is a monthly equation of the variation depending on the Moon's anomaly ; and the other an equation arifing from the Earth's being not in the focus of the Moon's orbit, as it has been fuppofed to be, in all the modern theories fince Horrox.

For not having had time to examine over the obfervations which are neceffary, but being oblig'd inftead thereof, to take Sir IJaac Newton's theory for my chief guide and direction, I cannot

\section*{[7]}
venture to depart from it too far, in eftabliming equations entirely new; fince I am well affured, upon the beft authority, that it is never found to err more than feven or eight minutes.

And therefore, hoping that the reader, who confiders the fudden occafion and neceffity of my publifhing thefe Propofitions at this time, will make due allowance for the want of order and method, and look upon them only as fo many diftinct Rules and Propofitions not connected: I Thall begin, without any other preface, with fhewing the origine of that inequality, which is called the Vaziation or Reflection of the Moon.

The variation or reflection is that monthly in-

The Variation of the Moon. equality in the Moon's motion, wherein it more manifeftly differs from the laws of the motion of a planet in an elliptic orbit, Tycho Brabe makes this inequality to arife from a kind of libratory motion backwards and forwards, whereby the Moon is accelerated and retarded by turns, moving fwifter in the firft and third quarter, and flower in the fecond and fourth, which inequality is principally obferved in the octants.

Sir Ifaac Nerwten accounts for the A 4 variation

\section*{[8]}
variation from the different force of gravity of the Moon and Earth to the Sun, arifing from the different diftances of the Moon in its feveral afpects.

The mean gravity of the Moon to the Sun, he fuppofes, is fatisfied by the annual motion of the Moon round the Sun; the gravity of the Moon to the Earth, he fuppofes, is fatisfied by a revolution of the Moon about the Earth. But the difference of the Moon's gravity to the Sun more or lefs than the Earth's gravity, he fuppofes, produces two effects; for as this difference of force may be refolved into two forces, one acting in the way, or contrary to the way, of the Moon about the Earth, and the other acting in the line to or from the Earth : the firf caufes the Moon to defcribe a larger or fmaller area in the fame time about the Earth, according as it tends to accelerate or retard it; the other changes the form of the lunar orbit from what it ought to be merely from the Moon's gravity to the Earth, and both together make up that inequality which is called the variation.

But fince the real motion of the Moon, tho' a fimple motion, caufed by a con, tinual deflection from a ftreight line, by the

\section*{[9]}
the joint force of its gravity to the Sun and Earth, thereby defribing an orbir, which inclofes not the Earth but the Sun, is yet confidered as a compound motion, made from two motions, one about the Sun, and the other about the Earth ; becaufe two fuch motions are requifite to anfwer the two forces of its gravity, if feparately confidered: For the very fame reafon, the Moon's motion ought to be refolved into a third motion of revolution, fince there remains a third force to be fatisfied, and that is the force arifing from the alte= ration of the Moon's gravity to the Sun. And this when confidered, will require a motion in a fmall ellipfis, in the manner here defcribed.

The circle \(A D F H\) reprefents the Fig. s. orbit of the Moon about the Earth in the center \(\mathcal{T}\), as it would be at a mean diftance, fuppofing the Moon had no gravity to any other body but the Earth. The diameter \(A T F\) divides that part. of the orbit which is towards the Sun, fuppofe \(A D F\), from the part oppofite to the Sun, fuppofe \(A H F\). The diameter at right angles \(H \mathcal{T} D\), is the line of the Moon's conjunction with or oppofition to the Sun. The figure \(P 2 L K\) is an Ellipfis, whofe cen-

\section*{[₹0]}
ter is carried round the Earth in the orbit \(A B D E F H\), having its longer axis \(P L\) in length double of the fhorter axis \(2, K\), and lying always parallel to \(\tau D\), the line joining the centers of the Earth and Sun, Whilft the faid figure is carried from \(A\) to \(B\), the Moon revolves the contrary way from 2 to \(N\), fo as to defcribe equal areas in equal times about the centre of it; and to perform its revolution in the fame time as the center of the faid Elliptic epicycle (if it may be fo called,) performs its revolution; the Moon being always in the remoter extremity of its fhorter axis in Qand \(K\) when it is in the quarters, and in the neareft extremity of its longer axis at the time of the new and full Moon.

The fhorter femiaxis of this Ellipfis \(A Q\), is to the diftance of its center from the Earth \(A T\), in the duplicate proportion of the Moon's periodical time about the Earth to the Sun's periodical time: Which proportion, if there be 2139 revolutions of the Moon to the Stars in 160 fydercal years, is that of 47 to 8400 .

The figure which is defcribed by this compound motion of the Moon in the Elliptic epicycle, whilft the center of it is carried round the Earth, very nearly reprefents the form of the Lunar orbit; fuppofing it wheur eccentricity, and that the

\section*{[II]}
the plane was coincident with the plane of the ecliptic, and that the Sun continu'd in the fame place during the whole revolution of the Moon about the Earth.

From the above conftruction it appears, that the proportion between the mean diftance of the Moon and its greateft or leaft diftances, is eafily affigned; being fomething larger than that which is affigned by Sir Ifaac Nerwton in the 8 th propofition of his third book. But as the computation there given, depends upon the folution of a biquadratio equation, affected with numeral coefficients; which renders it impoffible to compare the proportions with each other, fo as to fee their agreement or difagreement, except in a particular application to numbers; I thall therefore fet down a rule, in general terms, derived from his method, which will be exact enough, unlefs the periods of the Sun and Moon fhould be much nearer equal than they are. Let \(L\) be the periodical time of the Moon, \(S\) the period of the Sun, \(M\) the fynodical period of the Moon to the Sun, and \(D\) be the difference of the periods of the Sun and Moon; then, according to Sir I/aac Nerwton's method, the difference of the two axes of the Moon's elliptic orbit, as it is contracted by the action

\section*{[12]}
action of the Sun, is to the fum of the faid \(M+L\)
axes as \(3 L \times \frac{1}{2}\) to \(4 D D-S S\). But according to the conftruction before laid down, the faid proportion is as \(3 L L\) to \(2 S S-L L\).

B y Sir Ifaac Nervton's rule, the difference will be to the fum, nearly as 5 to 694; and confequently the diameters will be nearly as 689 to 699 , or 69 to 70 : But by the latter rule, the difference will be to the fum, nearly as 1 to 119; and the diameters or diftances of the Moon, in its conjunction and quadrature with the Sun, will be as 59 to 6o. Dr.Halley, (who in his remarks upon the Lunar theory, at the end of his catalogue of the Southern ftars, firft took notice of this contraction of the Lunar orbit in the Syzygies from the phenomena of the Moon's motion) makes the difference of the diameters to the fum, as 1 to 90 ; and confequently the greater axis to the leffer, as \(45 \frac{1}{2}\) to \(44 \frac{1}{2}\).

Bu t the difference, in thefe proportions of the extream diftances, tho' it may appear confiderable, is not, however, to be diftinguifh'd by the obfervations on the diameters of the Moon, whilf the variations of the diameters, from

\section*{[13]}
from this caufe, are intermixt with the other much greater variations, arifing from the eccentricity of the orbit.

The angle of the Moon's elongation R'g. 1: from the center, defigned by \(B T N\), is properly the variation or reffection of the Moon. The properties of which are evident from the defcription:

First, It is asthe fine of the double diftance of the Moon from the quadrature or conjunction with the Sun: For is is the difference of the two angles \(B T A\) and \(N T A\), whofe tangents, by the confruction, are in a given proportion.

Secondly, The variation is, cateris paribus, in the duplicate proportion of the fynodical time of the Moon's revolution to the Sun. For the variation is in proportion to the mean diameter of the epicycle, and that is in the duplicate proportion of the fynodical time of revolution.
The greateft variation is an angle, whofe fine is to the radius, as the difference of the greateft and leaft diffances \(\mathcal{T} 2\), and \(\mathcal{T} L\), that is \(3 A 2\), to their fum. According to the proportion of the lines before defcribed, this rule makes the elongation near 29 minutes; which would be

\section*{[14]}
be the variation, fuppofing the Moon perform'd its revolution to the Sun in the time of its revolution round the Earth. But if that elongation of 29 Minutes be increafed in the duplicate proportion of the fynodical time to the periodical time of revolution, it will produce near 34 minutes for the variation.

I T is to be noted, that what is faid of the epicycle, is upon fuppoofition, that the Earths orbit round the Sun is a circle; if the eccentricity of the annual orbit be confidered, the mean diameter of the epicycle muft increafe or diminifh reciprocally in the triplicate proportion of the Sun's diftance.

The method of finding the inequalities in any Revolution.

The conftruction which I communicated to Sir Ifaac Nerwton, for the annual motion of the nodes of the Moon's orbit, (which is printed in the fcholium to the \(33^{\mathrm{d}}\) propofition of his 3 d book) is a cafe of a general method, for thewing the inequality of any motion round a center, when the hourly motion or velocity of the object varies, according to any rule, depending on its afpect to fome other object. For in any revolution, the mean motion and inequality are to be affigned by means of a curvilinear

\section*{[15]}
figure, wherein equal areas are defcribed about the center in equal times; the property of which figure is, that therays from the center, are always reciprocally in the fubduplicate proportion of the hourly motion or velocity about the center.

Thus in the figure defcribed in \(\mathrm{my}_{\text {Fig. . }}\) confruction, where \(\mathcal{T} N\) is the line of the nodes, \(T A\) the line drawn to the Sun, is fuppofed to revolve round the center \(\mathcal{T}\), with the velocity of the Sun's motion from the node; and the ray \(\tau B\), which is taken always in the fubduplicate proportion of that velocity, will defcribe equal areas in equal times; fo that the fector \(N T B\) will be the mean motion of the Sun; the fector \(N T A\) the motion of the Sun from the node; and confequently the area NAB the motion of the node; which will be a retrograde motion if the area be within the circle, and direct if it falls withour. From whence it follows,
I. That the periodical time of the Sun's revolution to the node, will be to the periodical time of the Sun's revolution, as the area of the curvilinear figure, to the area of the circle.
2. That if a circle be defribed, whofe area is equal to the area of the curvili-

\section*{[16]}
near figure, it will cut that figure in the place where the Sun has the mean motion from the node.
3. If an angle \(N \mathcal{T}^{\prime} F\) be made, which fhall comprehend an area in the faid circle, equal to the fector \(N \mathscr{T} B\) in the figure, that angle will be the mean motion of the Sun from the node. And confequently,
4. The angle \(F \dot{T} B\), which is the difference between the Sun's true motion from the node, defigned by \(A T N\), and the Sun's mean motion from the node, defigned by \(F \mathcal{T} N\), will be the equation for the Sun's motion from the node, when the Sun's pofition to the node is defigned by the angle \(A T N\).

From all which it appears, that what is faid of the Sun's motion from the node, will hold as to any other motion round a center; as of the Sun from the Moon, or the Moon from the node or apogee. In any fuch revolution, a curvilinear figure may be defcribed about the center, by the areas of which, the relation between the mean and true motion may be fhewn; and confequently the inequality or equation of the motion.

\section*{[17]}

And as in every revolution there is a certain figure which is proper to fhew this relation, fuch a figure may be call'd an Equant for that motion or revolution.

And in every revolution where the Equant is a figure of the fame property, the inequalities or equations will alter according to the fame rule.

Thus, if the Equant be an ellipfis about the center, as in that for the motion of the Sun from the node,

Firft, The mean motion in the whole revolution, will be a geometrical mean proportional, between the greateft motion in the extremity of the leffer axis, and the leaft motion in the extremity of the longer axis: For the radius of the circle, which is equal to anellipfis, is a mean proportional between the two femiaxes.

Secondly, The tangents of the angles of the mean and true motion, are in the given proportion of the two axes of the ellipfis. Thus the tangents of the angles of the true and mean motion of the Sun from the node, viz, the tangents of the Fig . 2: angles \(A T N\) and \(E T N\), are in proportion as the ordinates \(B G\) and \(F G\), that is, as the femiaxes \(T H\) and \(T N\).

Thirdly, Тне fine of the angle of the greateft inequality in the octants is B to

\section*{[18]}
to the radius, as half the fum of the axes to half their difference.

Ir is to be noted, that the equant is an ellipfis about the center, in every motion, where the excefs of the velocity about the center above the leaft velocity, is always in the duplicate proportion of the fine of the angle of the true motion, from the place where the velocity about the center is leaft. From which remark, upon examination it will appear, that the following motions are to be reduced to an Elliptic equant defcribed about the center.

The monthly motion of the Moon from the node.

The annuai motion of the Sun from the node.

The motion of the Moon from the Sun, as it is accelerated or retarded, by the alteration of the area defcrib'd about the Earth, according to Sir IJaac Newton's 26th prop. 3 d book.
And the annual Motion of the Sun from the apogee. How thefe feveral equants are determin'd will appear by what follows.

The node is in its fiwifeft retrograde

The motion of the Nodes. motion, when the Sun and Moon are in conjunction or oppo:

\section*{[19]}
oppofition, and in a quadrature with the line of the nodes. According to Sir 1 Jaac Newton's method, (explain'd at the end of the thirtieth propofition of the third book) the force of the Sun to produce a motion in the node, at this time, is equal to three times the mean Solar force; that is, by the conftruction of the elliptic epicycle, equal to a force, which is to the force of gravity, as \(3 A Q\) to \(A T\), or three times the leffer Fig. : : femiaxis of the ellipfis to the diftance of its center from the center of the Earth. But if the Moon revolve in the elliptic epicycle as before defcribed, the force to make a motion in the node at the time mention'd, will be to the force of gravity, as \(3 \mathcal{D} L\) to \(\mathcal{D T}\), or three times the longer femiaxis to the diftance of the center; which is the double of the former force. But then, according to Sir Ifaac's method, the motion of the node at this time, is to the Moon's motion, as the folar force to create a motion in the node is to the force of gravity. But if the Moon be conceived as revolving in a circle, with the velocity of its motion from the node at this time, when the node moves fwifteft, and the plane of the faid circle be fuppofed to have a rotation
\[
\mathrm{B}_{2} \quad \text { upon }
\]
\[
[20]
\]
upon an axis perpendicular to the plane of the ecliptic, and the contrary way to the motion of the Moon, fo as to produce the motion of the node, and leave the Moon to move with its own motion about the Earth; the force to make a motion in the node feems to be the difference of the forces to retain it with the velocity of its motion in the moveable and immoveable planes: But the velocities of bodies revolving in circles are in the fubduplicate proportion of the central forces. From whence it follows, that
The motion of the Moon from the node at this time, when the node moves fwifteft, is to the motion of the Moon, in the fubduplicate proportion of the fitm of the forces to the force of gravity, or as the fum of TD and \({ }_{3} \mathrm{DL}\) to TD.
And this would be the greateft motion of the node, upon fuppofition that the plane of the Moon's orbit was almoft co-incident with the plane of the ecliptic; but if the inclination be confidered, the motive force for the node muft be diminifhed, in the proportion of the fine-complement of the inclination to the radius. How much this

\section*{\([2 i]\)}
this motion is, will appear by the following fhort calculation.

The diftance \(\mathcal{T D}\) being as before equal to 8400 , and \(3 \mathcal{D} L\) being 282, the inclination of the plane in this pofition is \(4^{\circ} \cdot 59^{\prime} \cdot 35^{\prime \prime}\); the fine-comple. ment of which is to the radius, as 525 to \(5^{2.7}\) nearly; therefore the force of gravity is to the motive force for the node thus diminifhed, in the compound proportion of 8400 to 282 , and of 527 to 525 , that is, in the proportion of 4216 to 14 J . So that the greateft motion of the Moon from the node is to the motion of the Moon, in the fubduplicate proportion of 4357 to 4216 , that is, in the proportion nearly of 613 to 603 . According to which calculation, the greatelt hourly motion of the node ought to be \(32^{\prime \prime}\). \(47^{\text {"II. }}\) By Sir Ifaac Newton's method, it amounts to \(33^{\prime \prime} .10 \frac{1}{2}\).

This is the fwifteft retrograde motion of the node, when the line of the nodes is in a quadrature with the Sun, and the Moon is in its greateft latitude in conjunction or oppofition to the Sun. But the equant for the motion of the Moon from the node in this month, when the line of the nodes is in quadrature with the Sun, is an ellipfis about the center; and therefore the B 3 mean
\[
[22]
\]
mean motion in this month will be known by the following rule:

The mean motion of the Moon from the node, in that month when the line of the nodes is in a quadrature with the Sun, is a geometrical mean proportional, between the greateft motion of the Moon from the node and the motion of the Moon.

And therefore this mean motion, will be to the motion of the Moon, in the fubduplicate proportion of 613 to 603 , that is, nearly in the proportion of \(\mathbf{1 2 2 1}\) to 1211 . So that the mean motion of the node in this month, will be to the motion of the Moon, as 10 to 1211, which makes the mean hourly motion \(16^{\prime \prime} \cdot 19^{\prime \prime \prime} \cdot \frac{1}{40}\). According to Sir Ifaac Newton it amounts to \(16^{\prime \prime} .35^{\prime \prime \prime}\); but, by the corrections which he afterwards ufes, it is reduced to \(16^{\prime \prime} .16^{\prime \prime \prime} \frac{3}{3}\).

But the equant for the annual motion of the Sun from the node being alfo an ellipfis, it follows, that

The mean motion of the Sun from the node, is a geometrical mean proportional, between the motion of the Sun and the mean motion of the Sun from the node, in the month when the line of the nodes is in quadrature with the Sun.

\section*{[23]}

How near this rule agrees with the obfervations, will appear by this calculation.

Since the mean motion of the node in that month, when the line of nodes is in quadrature to the Sun, was before fhewn to be to the Moon's mean motion, as 10 to 1211 ; and the motion of the Sun is to the motion of the Moon, as 160 to 2139 : it follows, that the motion of the node and the motion of the Sun will be in the proportion of 154 and 1395 ; and therefore, by the rule, the Sun's mean motion from the node, is to the Sun's mean motion, in the fubduplicate proportion of 1549 to 1395 , that is, nearly as 98 to 93 . Which correfponds with the obfervations; there being 98 revo lutions of the Sun to the node in 93 revolutions of the Sun. The fubduplicate proportion taken more nearly, is as 941 to 893 , which will produce \(19^{\circ}\). \(21^{\prime} \cdot 3^{\prime \prime}\), for the motion of the node from the fix'd Stars, in a fydereal year. The motion (as obferv'd) is \(19^{\circ} .21^{\prime} .22^{\prime \prime}\).

Had the calculation from the rule, been more exactly made in large numbers, the annual motion produced would be \(19^{\circ} \cdot 21^{\prime} \cdot 07^{\prime \prime \frac{1}{2}}\), which is \(14^{\prime \prime}\) B4. lefs

\section*{(24)}
lefs than the motion, as obferved by the Aftronomers.

Which difference may very probably arife from the Sun's parallax; and if fo, it may perhaps furnifh the beft and moft certain method of adjufting and fixing the true diftance of the Sun. For the Sun's force being fomething more on that half of the orb which is towards the Sun, than what it is on the other half, the elliptic epicycle is accordingly larger in the firft cafe, than in the latter. And by calculation, I find that the mean motion of the node, arifing after confideration is had of this difference, is more than the mean motion from the mean magnitude of the epicycle, by near \(2^{\prime \prime}\) in the year, for every minute in the parallactic angle of the orbit of the Moon, or for every feco nd of the Sun's parallax. And by the beft computation I have yet made, this difference of \(14^{\prime \prime}\), in the annual motion of the node, will arife from about \(8^{\prime \prime}\) of parallax; which will make the Sun's diftance above 25000 femi-diameters of the Earth.

In like manner as the equant for the motion of the node, in that month when the line of the nodes is in quadrature with the Sun, is an ellipfis; fo in any other

\section*{(25)}
other month it is alfo an ellipflis : the motion of the node being direct and retrograde by turns, in the Moon's paffing from the quadrature to the Sun to the place of its node, and from the place of its node to the quadrature.

But thefe elliptic equants do not only ferve to fhew the ine- The Inclination of quality of the motion of the node, but alfo the inclination of thePlane of the Moon's orbit to the Plane of the Ecliptic. the plane of the Moon's orbit to the plane of the ecliptic. Thus the rays in the elliptic equants, for the motion of the Moon from the node in each month, defign the inclinations of the plane of its orbit to the plane of the ecliptic, in the feveral refpective pofitions of the Moon to the line of the nodes. And the rays of the elliptic equant for the annual motion of the Sun from the node, in my Conftruction, (in the fchol. to prop. 33. book 3. of Sir Ifacc Newton's Principia) defign the different mean inclinations of the faid plane, to the plane of the ecliptic in each month, when the Sun is in each refpective afpect to the line of the nodes.

Thus if NT (the femi-tranfverfe Fig. . axis of the elliptic equant for the motion of the Sun from the node,) defign the

\section*{(26)}
the mean inclination of the plane, or, which is the fame thing, if it reprefent the mean diftance between the pole of the ecliptic and the pole of the Moon's orbit, in that month when the Sun is in the line of the nodes; \(\mathcal{T} H\), the femiconjugate axis of the faid ellipfis, will defign the mean inclination or mean diftance of the poles in that month when the line of nodes is in quadrature to the Sun; and \(\mathcal{T} B\), any other femidiameter of the faid ellipfis, will reprefent the mean diftance between the faid poles, when the Sun is in that afpect to the line of the nodes, which is defigned by the angle \(N T A\). For example, if the leaft inclination, defigned by the fhorter femiaxis \(\mathcal{T} H\) be \(5^{\circ} .00^{\prime} .00^{\prime \prime}\); fince \(T H\) is to \(T K\) as the motion of the Sun to the mean motion of the Sun from the node, by the property of this equant ; and fince there are 98 revolutions of the Sun to the node in 93 revolutions of the Sun; it follows, that \(H K\), the difference be\(t\) ween the greateft and leaft of the mean inclinations in the feveral months of the year, is to \(T H\) the leaft, as 5 to 93 ; by which proportion, the faid difference will amount to \(16^{\prime}\). \(10^{\prime \prime}\). According to Sir Ifaac Newton's computation in the 35th prop. of the third book, it is 16.

\section*{(27)}

16'. \(23^{\prime \prime \frac{1}{2}}\). But if the faid number be leffen'd in the proportion of 69 to 70 , according to the author's note at the end of the \(34^{\text {th }}\) prop. the faid difference will become \(\mathbf{1 6}^{\prime} .9^{\prime \prime}\).

And in like manner, the inclinations of the plane of the Moon's orbit, in that month when the motion of the node is fwifteft, (being fituated in the line of quadratures with the Sun,) are determined by the equant for the motion of the Moon from the node, in that month.

Thus, let \(\mathcal{T} H\) be to \(\mathcal{T} N\) in the fub- Fig. 2 . duplicate proportion of the Moon's motion, to its greatef motion from the node, when the Moon is in the conjunction in \(T H\); that is, (as was before determined) let \(T H\) be to \(T N\) in the proportion of 1211 to 1221 ; and the ellipfis defcribed on the femiaxes \(\mathcal{T} H\) and \(\mathcal{T} N\), will be the equant for the motion of the Moon from the node in that month. And the rays of the faid equant will defign the inclinations of the plane in the feveral afpects of the Moon to the line of the nodes. That is, if \(T N\) be the inclination of the plane, or the diftance of the pole of the ecliptic from the pole of the Moon's orbit, when the Moon

\section*{(28)}
is in \(T N\) the line of the nodes, the ray \(T B\) will reprefent the diftance of the faid poles, or the inclination of the plane, in that afpect which is defigned by the angle NTB.

Which being laid down, it follows that the whole variation of the inclination, in the time the Moon moves from the line of the nodes to its quadrature in \(T H K\), is to the leaft inclination, as \(K H\) to \(T H\), that is, as io to \(\mathbf{1 2 1 1}\). Wherefore if the leaft inclination be \(4^{\circ} \cdot 59^{\prime} \cdot 35^{\prime \prime}\), the whole variation will be \(2^{\prime}\). \(29^{\prime \prime}\). This is upon fuppofition that the Sun continued in the fame pofition to the line of the nodes, during the time that the Moon moves from the node to its quadrature. But the Sun's motion protracting the time of the Moon's period to the Sun, in the proportion of \(\mathbf{1 3}\) to \(\mathbf{1 2}\); the variation muft be increafed in the fame proportion, and will therefore be \(\mathbf{z}^{\prime} .4 \mathrm{I}^{\prime \prime}\). According to Sir IJaac Nereton's computation, as delivered in the corollaries to the \(34^{\text {thi }}\) prop. of the 3 d book, for ftating this greateft variation, (the intermediate variations in this or any other month not being computed or fhewn by any method) it amounts to \(2^{\prime} .43^{\prime \prime}\). But if the faid quantity be diminifh'd in
the proportion of 70 to 69 , according to his note at the end of the faid propofition, it will become the fame precifely as it is here deriv'd from the equant.

The motion of the Moon from the Sun, as it is accelerated or re- The Variation of tarded by the increment of the the Area defcribed by area defcribed about the Earth, Earth. (according to the 26 th prop. of the 3 d book) is alfo to be reduced to an elliptic equant ; by taking the fhorter axis to the longer axis, in the fubquadruplicate proportion of the force of the Moon's gravity to the Earth, to the faid force added to three times the mean Solar force, that is, as \(T A\) to the firft of three Fig. i: mean proportionals between \(\tau A\) and \(T A+3 A \mathscr{Q}\), And in the fame proportion is the area defcribed by the Moon about the Earth, when in quadrature with the Sun, to the mean area, or as the mean area to the area defcribed in the fyzygies: So that the greateft area in the fyzygies is to the leaft in the quadratures, in the fubduplicate proportion of \(T A+3 A Q\) to \(T A\), or as \(\sqrt{8541}\) to \(\sqrt{8400}\). This is upon fuppofition, that the Moon revolves to the Sun in the fame time as it revolves about the Earth ; which will be found to agree
gree very nearly with Sir Ifaac Nereton's computation, in the before-cited propofition.

The Motion of the Apogee.

And after the fame manner an elliptic equant might be conftructed, which would very nearly fhew the mean motion of the apogee, according to the rules deliver'd by Sir Ifaac Newton (in the corollaries of the \(45^{\text {th }}\) prop. of the firft book) for ftating the motion of the apogee, namely, by taking the greateft retrograde motion of the apogee, from the force of the Sun upon the Moon in the quarters; and the greateft direct motion, from the force of the Sun upon the Moon when in the conjunction or oppofition; each according to his rule, deliver'd in the fecond corollary to the faid propofition. And if an ellipfis be made whofe axes are in the fubduplicate proportion of the Moon's motion from the apogee, when in the faid fwifteft direct and retrograde motions, the faid ellipfis will be nearly the equant for the motion of the Moon from the apogee, and will be found to be nearly of the form of that above for the increment of the area.

But the motion of the apogee, according to this method, will be found

\section*{(31)}
to be no more than \(1^{0} \cdot 37^{\prime} \cdot 22^{\prime \prime}\), in the revolution of the Moon from apogee to apogee, which (according to the obfervations) ought to be \(3^{\circ} \cdot 4^{\prime}\). 7 "
So that it feems there is more force neceffary to account for the motion of the Moon's apogee, than what arifes from the variation of the Moon's gravity to the Sun, in its revolution about the Earth.

But if the caufe of this motion be fuppofed to arife from the variation of the Moon's gravity to the Earth, as it revolves round in the elliptic epicycle, this difference of force, which is near double the former, will be found to be fufficient to account for the motion; but not with that exactnefs as ought to be expected. Neither is there any method that I have ever yet met with upon the commonly received principles, which is perfectly fufficient to explain the motion of the Moon's apogce.

The rules which follow concerning the motion of the apogee, and the alteration of the eccentricity, are founded upon other principles, which I may have occafion hereafter to explain, it being, as I apprehend, impoffible to derive thefe, and many other fuch propofitions

\section*{(32)}
pofitions from the laws of centripetal forces.
Fig. r. Let \(T G\) (in the above conftruction of the Lunar orbit) be the mean diftance of the Moon, or half the fum of its greateft and leaft diftances, viz. T \& and \(\mathcal{T} L\); and let \(C L\) be the mean femidiameter of the elliptic epicycle, or half the fum of the femiaxes; and take a diftance \(L M\), on the other fide towards the centre, equal to \(C L\); then,

The mean motion of the Moon from its apogee, is to the mean motion of the Moon, in the Jubduplicate proportion of \(\mathcal{T} M\) to \(\mathcal{T} C\).

For example, Half the fhorter axis or \(\mathcal{D C}\) is \(23^{\frac{1}{2}}\); therefore \(T C\) the mean diftance is \(8376 \frac{1}{2} ; C M\) or \(2 C L\), the fum of the femiaxes, is 141 ; fo that \(T M\) is \(8235^{\frac{3}{2}}\). Wherefore the motion of the Moon from the apogee is to the motion of the Moon, in the fubduplicate proportion of \(8235^{\frac{1}{2}}\) to \(8376 \frac{1}{2}\), or of 16471 to 16753 , that is, nearly as 117 to 118 , or more nearly, as 352 to 355 ; or yet more nearly, as 1877 to 1893 ; fo that there ought to be about 16 revolutions of the apogee in 1893 revolutions of the Moon; which agrees to great precifenefs with the moft modern numbers of Aftronomy; according to which proportion,

\section*{[33]}
portion, the mean motion of the apogee, in a fydereal year, ought to be \(40^{\circ} \cdot 40^{\prime} \cdot 40^{\prime \prime} .1\). But by the numbers in Sir Ifaac Newton's theory of the Moon, the faid motion is \(40^{\circ} .40^{\prime} .43^{\prime \prime}\). According to the numbers of Tycho Brabe, it ought to be \(40^{\circ} .40^{\prime} .47^{\prime \prime}\).

The mean motion of the apogee being ftated, I find the following rule for the alteration of the ec- The Varietion of centricity.
The leaft eccentricity is to the mean eccentricity, in the duplicate proportion of the Sun's mean motion from the apogee of the Moon's orbit, to the Sun's mean motion. Or in the duplicate proportion of the periodical time of the Sun's revolution, to the mean periodical time of its revolution to the Moon's apogee.

By the foregoing rule for the mean motion of the apogee, there are 16 revolutions of the apogee in 189; revolutions of the Moon ; but there being 254 revolutions of the Moon in is revolutions of the Sun; there muft be about 7 revolutions of the apogee in about 62 revolutions of the Sun, or rather about 20 in 177. So that the periods of the Sun to the Stars, and of the Sun to the Moon's apogec, are in proportion

\section*{[34]}
portion nearly as the numbers 157 and 177. The duplicate of which proportion is that of 107 to 136 ; which, according to the rule, ought to be the proportion of the leaft eccentricity to the mean eccentricity.

So that by this rule, the mean eccentricity, (or half the fum of the greateft and leaft,) ought to be to the difference of the mean from the leaft, (or half the difference of the greateft and the leaft,) as 136 to 29 .'

How near this agrees with the Obfervations, will appear from the numbers of Mr. Horrox or Mr. Flamfed, and of Sir Iface Newion.

The mean eccentricity according to Mr. Fiamfed or Mr. Horrox is 0.0s 5236 , half the difference between the greateft and leaft is 0.011617 ; which numbers are in the proportion of \(13 \int_{\frac{1}{2}}\) to \(28_{2}\) nearly.

According to Sir Ifaci Newton, the mean eccentricity is 0.05505 , hall the difference of the greateft and leafi is 0.01173 ; which numbers are in proportion nearly as \(13 \int_{\frac{45}{5}}^{5}\) to \(2 \int_{\frac{4}{8} 2}\), cach of which proportions is very near that above affigned.

But it is to be noted, that the rule, which is here laid down, is true only upon fuppofition that the eccentricity :

\section*{[35]}
exceeding fmall. There is another rule derived from a different method, which prefuppofes the knowledge of the quantity of the mean eccentricity; and which will not only determine the variation of the eccentricity according to the laws of gravity, with greater exactnefs, but ferve alfo to correct an hypothefis in the modern theories of the Moon, in which their greateft error feems to confift ; and that is, in placing the earth in the focus of that ellipfis, which is defcribed on the extreme diameters of the lunar orbit; whereas it ought to be in a certain point nearer the perigee, as I may have occafion to explain more fully hereafter.

The greateft and leaft eccentricity being determined; the equant for the motion of the Sun from the apogee is an ellipfis, whofe greater and leffer axes are the greateft and leaft eccentricities : and therefore, by the property of fuch an equant as before laid down,

The fine of the greateft equation of the apogee will be to the radius, as the difference of the axes of the equant is to their fum; that is, as the difference of the greateft and leaft eccentricities to their fum.
\[
\text { C } 2 \text { FOK }
\]

\section*{[36]}

For example, fince the difference is to the fum as 29 to 136 , by what was determined in the foregoing article, the greateft equation of the apogee will be about \(12^{\circ}\). \(18^{\prime} .40^{\prime \prime}\). Sir I/aac Nereton has determined it from the obfervations to be \(12^{\circ}\). \(18^{\prime}\).

The greateft and leaft eccentricities being determined; the eccentricity and equation of the apogee, in any given afpect of the Sun, are determined by the equant, in the following manner.

Let \(T N\) be the greateft eccentriciFig 2. ty, \(\tau H\) the leaft, the ellipfis on the femi-axes \(T N\) and \(T H\), the equant for the motion of the apogee.

Then if the angle \(N T F\), be made equal to the mean diftance or mean motion of the Sun from the apogee, the angle \(N T B\) will be the true diftance or motion of the Sun from the apogee; the difference \(B T F\), the equation of the apogee; and the ray \(\mathcal{T} B\), the eccentricity of the orbit, in that alpect of the Sun to the apogee defigned by the angle \(N T B\). Hence arifes this rule.

The tangent of the mean diffance, viz. NTF, is to the tangent of the true diftance NTB, in the given proportion of

\section*{[37]}
the greateft eccentricity TN to the leaft TH, that is, as 16 s to 107.

From what has been laid down concerning the general property of an equant, that it is a curve line defcribed about the center, whofe rays are reciprocally in the fubduplicate proportion of the velocity at the center, or the velocity of revolution, it will not be difficult to defcribe the proper curve for any motion that is propofed; and where the inequality of the motion throughout the revolution is but frmall, there is no need of any nice or frrupulous exactnels in the quadrature of the curve for fhewing what the equation is. Thus all the fmall annual equations of the Moon's motion arifing from the different diftances of the Sun, at different times of the year, may be reduced to one rule exact enough for the purpofe.

For fince the Sun's force to create thefe annual alterations, is reciprocally in the triplicate proportion of the diftance; the rays of the equant for fuch 2 motion, will be in the fefquiplicate proportion of the diftance. From whence it will not be difficult to prove, that if the revolution of the motion to be equated, were performed in the time of the Sun's revolution, the equation would be to the \(\mathrm{C}_{3}\) equation

\section*{[38]}
equation of the Sun's center, nearly as 3 to 2 : and fo if the force decreafed as any other power of the Sun's diftance, fuppofe that whofe index is \(m\), the e quation would be to that of the Sun's center as \(m\) to 2 . But if the motion be performed in any other period, the equation will be more or lefs, in the proportion of the period of the revolution to the Sun, to the period of the revolution of the motion to be equated. Thus if it were the node or apogee of the Moon's orbit, the equation is to the former as the period of the Sun to the node or apogee, to the period of the node or apogee. Which rule makes the greateft equation for the node about \(8^{\circ} .50^{\circ}\), being a fmall matter lefs than that in Sir 1 faac Newton's theory ; and the greateft equation for the apogee about 21. \(57^{\prime \prime}\), being fomething larger than that in the fame theory.

The like rule will ferve for the annual equation of the Moon's mean motion. If inftead of the equation for the Sun's center, another finall equation be taken in proportion to it as the force, by Sir Iraac Newton called the mean folar force, to the force of the Moon's gravity, or as 47 to 8400 ; the faid equation increafed in the proportion of the Sun's

\section*{[39]}

Sun's period to the mean fynodical period of the Moon to the Sun, or of 99 to 8 , will be the annual equation of the Moon's mean motion. According to this, the equation, when greateft, will be \(12^{\prime}\). \(s^{\prime \prime}\).

What is faid may be fufficient for the prefent purpofe, which is only to lay down the principal laws and rules of the feveral motions of the Moon, according to gravity. Some other propofitions, which feem no lefs neceffary than the former, for compleating the theory of the Moon's motion, as to its aftronomical ufe, I relerve to another time.

But to make fome amends for the fhortnefs and confutednets of the preceeding propofitions, I fhall add one example to fhew the ufe of the equant more at large, in what is commonly called the folution of the Keplerian problem; that being one of the things which I propofed to explain, when the elements for the theory of the Moon were advertifed.

C 4.
\(A n\)
\[
[40]
\]

An example of the ufe of the equant in finding the equation of the center.

Fig. 3.

LE'T the figure \(A D P\) be the orbit in which a body revolves, de1cribing equal areas in equal times by lines drawn from a given point \(S\); and let it be propos'd to find the equant for the apparent motion of the faid body, about any other place within the orbit, fuppofe \(F\).
\(L_{\text {et }}\) there be a line \(F R\) indefinitely produc'd, which revolves with the body as it moves through the arch \(A R\); and in the faid line take a diftance \(F p\), which fhall be to \(F R\), the diftance of the body from the given point \(F\), in the fubduplicate proportion of the perpendicular let fall upon the tangent of the orbit at \(R\) from the point \(S\), to the perpendicular on the faid tangent let fall from the given point \(F\); and the curvilinear figure, defcrib'd by the point \(p\), fo taken every where, will be the equant for the motion of the body about the point \(F\).

For fince the areas defcribed at the diftances \(F p\) and \(F R\) are in the dupli-

\section*{[41]}
cate proportion of thofe lines, that is, by the conftruction, in the proportion of the perpendiculars on the tangents let fall from \(S\) and \(F\); the areas which the body defcribes, in moving through the arch \(A R\) about the points \(S\) and \(F\), are in the proportion of the fame perpendiculars. And therefore the area defcribed by the revolution of the line \(F p\) in the figure, will be equal to that which is defcribed by the revolution of the line \(S R\) in the orbit. So that the areas defcribed in the figure will be equal in equal times, as they are in the orbit. And confequently the rays \(F p\) of the figure will conftantly be in the fubduplicate proportion of the velocity of the motion, as it appears at the center \(F\), which is the property of the equant.

From which conftruction, it will be eafy to fhew, that in the cafe where a body defcribes equal areas in equal times about a fixed point, there may be a place found out within the orbit, about which the body will appear to revolve with a motion more uniform than about any other place.

Thus fuppofe the orbit \(A \mathcal{D} \mathscr{P}\) was a figure, wherein the remoteft and neareft apfis \(A\) and \(P\) were diametrically oppofite, in a line paffing through the point

\section*{[42]}
\(S\), viz. the point about which the equal areas are defcribed; then if the point \(F\) be taken at the fame diftance from the remoteft apfis \(A\), as the point \(S\) is from the neareft apfis \(\Phi\), the faid center \(F\) will be the place, about which the body will appear to have the moft uniform motion. For in this cafe the point \(F\) will be in the middle of the figure \(L p D 1\), which is the equant for the motion about that point. So that the body will appear to move about the center \(F\), as fwift when it is in its floweft motion in the remoter apfis \(A\), as it does when it is in its fwifteft motion in the neareft \({ }^{2} \mathrm{p}\) pis \(\mathscr{P}\).

FOR by the conftruction, when the body is at \(A\), the ray of the equant \(F L\) is a mean proportional between \(A F\) and \(A S\); and when the body is at \(P\), the ray of the equant \(F l\) is a mean proportional between the two diftances \(P S\) and \(P F\), which are refpectively equal to the former,

AND in like manner in an orbit of any other given form, a place may be found about which the motion is moft regular.

If what has been faid be applied to the cafe of a body revolving in an elliptic orbit, and defcribing equal areas

\section*{[43]}
in equal times about one of the foci, as is the cafe of a planet about the Sun, and a fecondary planet about the primary one; it will ferve to fhew the foundation of the feveral hypothefes and rules which have been invented by the modern Aftronomers, for the equating of fuch motions; and likewife fhew how far each of them are deficient or imperfez.

For if the ellipfis \(A \mathcal{D} \mathscr{P}\) be the orbit of a planet deficribing equal areas about the Sun in the focus \(S\), the other focus, fuppofe \(F\), will be the place about which the motion is moft regular, from what has been already faid ; that focus being at the fame diftance from the aphelion \(A\), as the Sun at \(S\) is from the perihelion \(\subseteq P\). And by the conftruation, each ray \((F p)\) of the equant will always be a mean proportional between \(F R\) and \(R S\), the two diftances of the planet from the two foci, in that place where the ray \(F p\) is taken. For the rays \(S R\) and \(R F\), making equal angles with the tangent at \(R\), by the property of the ellipfis, are in the proportion of the perpendiculars from \(S\) and \(F\), let fall on thofe tangents. And therefore \(F p\) being to \(F R\) in the fubduplicate proportion

\section*{[44]}
portion of \(S R\) to \(F R\), it will be a mean proportional between thofe diftances.
I. Hence when the planet is in the aphelion \(A\), or perihelion \(\mathcal{P}\), the rays of the equant \(F L\) and \(F l\) are the fhorteft, each being equal to \(C D\), the leffer femiaxis of the orbit: For by the property of the ellipfis, the reCangle of the extream diftances from the focus is equal to the fquare of the leffer femi-axis.
2. When the planet is at its mean diftance from the Sun in \(D\) or \(d\), the extremities of the leffer axis, the equant cuts the orbit in the fame place; the rays of the equant being then the longeft, being each equal to the greater femi-axis C A. For in thofe points of the orbit, the diftances from the foci and the mean proportional are the fame.

From which form of the equant_it, appears,
1. That the velocity of the revolution about the focus \(F\) diminifhes, in the motion of the planet from the aphelion or perihelion to the mean diftance; and increafes in paffing from the mean diftance to the perihelion or aphelion. For the rays of the equant increafe in the firft cafe, and diminifh in the latter; and the velocity of revolution increafes

\section*{[45]}
in the duplicate proportion, as the rays diminifh.
2. IN any place of the orbit, fuppofe \(R\), the velocity of the revolution about the focus \(F\), is in proportion to the mean velocity, as the rectangle of the femi-axes of the orbit \(C D\) and \(C A\), to the rectangle of the focal diftances \(R F\) and \(R S\). For the equant and the orbit, being figures of the fame area, are each equal to a circle, whofe radius is a mean proportional between the two femi-axes \(C D\) and \(C A\). But the mean motion about the focus \(F\), is in thofe places, where the faid circle cuts the equant; and in other places, the velocity of the revolution is reciprocally as the fquare of the diftance, that is, reciprocally as the rectangle of the focal diftances \(R F\) and \(R S\).
3. So that the planet is in its mean velocity of revolution about the focus \(F\), in four places of the orbit, that is, where the rectangle of the focal diftances is equal to the rectangle of the femi-axes; which places in orbits nearly circular, fuch as thofe of the planets, are about 4s degrees from the aphelion or perihelion; but may be affigned in general, if need be, by taking a point in the orbir, fuppofe \(R\), whofe neareft diftance from the leffer axis of the orbit \(C D\) is to the longer

\section*{[46]}
longer femi-axis \(C A\), in the fubduplicate proportion of the longer axis to the fum of the two axes; as may be eafily proved.

What has been faid, may be enough to fhew the form of the equant, and the manner of the motion about the upper focus in general. But the precife determination of the inequality of the motion, requires the knowledge of the quadrature of the feveral fectors of the equant, or at leaft, if any other method be taken, of that which is equivalent to fuch a quadrature.

There are divers methods for fhewing. the relation between the mean and true motion of a planet round the Sun, or round the other focus, fome more exact than others. But the following feems the moft proper for exhibiting in one view, all the feveral hypothefes, and rules, which are in common ufe in the modern Aftronomy, whereby it may cafily appear, how far they agree or differ from each other, and how much each of them errs from the precife determination of the motion, according to the true law of an cqual defcription of areas about the Sun.

Upon the center \(F\) deferibe the ellipfis \(L N l\), equal and fimilar to the elliptic orbit \(A \mathcal{D P}\); but having its axes

\section*{[47]}
\(F N\) and \(F L\) contrarily pofited, that is \({ }_{3}\) the fhorter axis \(L F\) lying in the longer axis of the orbit \(A \cdot P\), and the longer axis \(F N\) parallel to the fhorter \(C D\). Let the focus of the faid ellipfis be in \(f\). And fuppofe two other ellipfis \(L B l\) and \(L f l\), to be drawn upon the common axis \(L l\), one paffing through the point \(B\), where the perpendicular \(F N\) interfects the orbit, and the other through the focus \(f\). Let the line \(F R\), revolving with the planet in the orbit, be indefinitely produced, till it interfect the firft ellipfis \(L N l\) (which was fimilar to the orbit) in \(Q\), the equant in \(p\), and the ellipfis \(L B!\) (drawn through the interfection \(B\),) in \(K\). From the point \(K\) let fall \(K H\) perpendicular to the line of apfides \(\mathcal{A} P\), and let it be produced till it interfect the firft ellipfis \(L N l\) in \(O\), and the ellipfis \(L f l\) (paffing through the focus \(f\)) in \(E\). And laftly, in the ellipfis \(L N /\), let \(G M\) be an ordinate equal and parallel to \(E H\). In which conftruction it is to be noted, that the ellipfis \(L f l\) and \(L B l\) are fuppofed as drawn only to divide the line \(O K H\) in given proportions, that \(K H\) may be to OH , as the latus rectum of the orbit to the tranfverfe axis; and that \(E H\) or \(G M\), the bafe of the elliptic fegment GL.M,
may be to \(O H\), as the diftance of the foci to the tranfverfe axis.

Which being premifed, it will be eafy to prove, that the fector \(p F L\) in the equant, or, which is the fame thing, the lector \(R S A\) in the orbit, is equal to the curvilinear area \(O K F M G\), that is, equal to the elliptic fector \(Q F L\), deducting the fegment \(L M G\), and adding or fubducting the trilinear face \(Q K O\), according as the angle \(R F A\) is lefs or greater than a right angle. Wherein it is to be noted, that thefe figns of addition and fubduction are to be ufed in general, if the angle \(A F R\) is taken from the aphelion in the firft femi-circle, but towards the aphelion in the latter femicircle. But if the angle \(A F R\) be taken the fame way throughout the whole revolution, as is the method in Aftronomical calculations, then the fegment and the trilinear fpace in the latter femi-circle muft be taken with the contrary figns to what are laid down.

Hence it appears, that the inequality in the motion of a planet about the upper focus \(F\), confifts of three parts.
I. The firft and principal of which is the inequality in the alteration of the angle \(Q F L\), in making equal areas in the ellipfis

\section*{[49]}
ellipfis \(L N l\). For if a circle equal to the ellipfis be defcribed upon the cenFig. 3. ter \(F\), fince the radius (being a mean proportional between the two femi-axes) will fall without the ellipfis about the line of apfides, and within it about the middle diftances, the angle QFL, which is proportional to the area defcribed in the circle, will therefore increafe fafter about the line of apfides, and flower about the middle diffances, in defcribing equal arcas in the ellipfis, than it ought to do in the hypothefis of Bifhop \(W\) ard, who makes the planet rcvolve uniformly about the focus. The equation to rectify this inequality is determined by the following rule.

The tangent of the angle \(Q F L\), is to the tangent of the angle in the circle including the fame area, as the longer axis of the ellipfis to the fhorter axis; and the difference of the angles, whofe tangents are in this proportion, is the equation; as is manifeft from what was be-fore faid on the properties of an clliptic equant. From the fame it alfo follows, that
r. The greateft equation is an angle, whofe fine is to the radius as the difference of the axes to their fum, or, which is the fame thing, as the fquare of the diftance
[so]
of the foci, to the fquare of half the fum of the axes. So that in ellipfis nearly circular, of different eccentricities, this greateft equation will vary nearly in the duplicate proportion of the eccentricity.
2. In ellipfis nearly circular, the cquation at any given angle \(Q F L\), is to the greatcft equation, nearly as the fine of the double of the given angle to the radius; which follows from hence, that the equation is the difference of two angles, whofe tangents are in a given proportion, and nearly equal.
3. This equation adds to the mean motion in the firft and third quadrant of mean anomaly, and fubducts in the fecond and fourth; as will eafily appear from that the line \(Q F\), in defcribing equal areas in the ellipfis, makes the angle to the line of the apfides, lefs acute than it would be in an uniform revolution.

This is the equation which is accounted for in the hypothefis of Bullialdus. For he fuppofes the motion of the planct in its orbit to be fo regulated about the upper focus, that the tangents of the angles, from the lines of apfides, fhall always be to the tangents of the angles anfwering to the mean anomaly, in the proportion of the ordinates

\section*{[51]}
in the ellipfis to the ordinates in the circle circumfcribed; which in effect is the fame, as if he had made the true equant for its motion about the focus \(F\), to be the ellipfis as above defcribed.

The fame equation is alfo ufed by Sir I/aac Newton, in his folution of the Keplerian problem, in the fcholium to the 3 ift prop. of the ift book, and is there defigned by the letter \(V\).

But fince the true equant \(L \mathcal{D} l\) coincides with the elliptic equant in the extremities of the fhorter axis at \(L\) and \(l\), and falls within the fame at its interfection with the longer axis \(F N\), it follows, that the motion of the planet in the femi-circle about the aphelion, is fwifter than according to the hypothefis of an equal defcription of areas in the cllipfis \(L N l\), and for the fame reafor flower in the other femi-circle about the perihelion ; the velocity about the center \(F\) being always reciprocally in the duplicate proportion of the diftance.

Which leads to the fecond part of the inequality of the motion about the focus.
II. The equation to rectify this ine:quality, is an angle anfivering to the fegment \(G L M\); which angle is to be added to the mean anomaly, to make the area of the elliptic fector \(Q F L\).

D 2
THE

\section*{\(\left[\begin{array}{cc} \\ 2\end{array}\right]\)}

This angle or equation is determined by the following rule. Let \(R\) be an angle fubtended by an arch equal in length to the radius of the circle, viz. 57,29578 degrees; and let \(A\) be an angle, whofe fine is to the radius as \(G M\), the bate of the fegment, to \(F N\) the femitranfverfe axis; alfo let \(B\) be an arch in proportion to \(R\), as the fine of the double of the angle \(A\) to the radius: Then the equation for the fegment will be equal to \(A-\frac{1}{2} B\).

This equation is at its maximum, when the angle \(L F Q\) is a right angle; the bafe of the fegment becoming equal to \(F f\), half the diftance of the foci, and the angle \(A\), being in this cafe half the angle \(F^{\prime} D J\) formed at the extremity of the leffer axis, and fubtended by FS, the diftance of the foci; which is commonly called the greateft equation of the center. And confequently the arch \(B\), in this cafe, is to \(R\), as the fine of the faid greateft equation of the center, is to the radius. So that according to this rule, for the meafure of the fegment, it will follow, That
1. This greateft equation is in proportion to the greateft equation of Bullialdus, as found in the preceding article for the elliptic equant, nearly

\section*{[53]}
nearly as three times the tranfverfe axis, to eight times the diftance of the foci.
Or, otherwife, the greateft equation is to the angle defigned by \(R\), as twice the cube of the diftance between the foci, to three times the cube of the tranfiverie axis. Either of which rules may be derived from the true angle, as before determined ; or by taking \(\frac{2}{3}\) of the rectangle of \(G M\) and \(L M\), the bafe and height of the fegment, for the meafure of that fegment.

So that in elliptic orbits nearly circular, this greateft equation for the fegment is in the triplicate proportion of the eccentricity.
2. This equation at any given angle \(Q F L\), is to the greateft equation, in the triplicate proportion of the ordinate \(O H\) to the femi-tranfverfe; that is, nearly as the cube of the fine of the mean anomaly joined to the double of Bullialdus's equation to the cube of the radius. For the fegment \(G M L\), which is proportional to the equation, is in the triplicate proportion of its bafe nearly ; and the bafe is proportional to the ordinate \(O H\), by the conftruction.

But the ordinate \(O H\) (in a circle defcribed upon the radius \(F N\),) becomes the fine of an angle, whole tan\(\mathrm{D}_{3}\) gent

\section*{[54]}
gent is to the tangent of the angle \(Q F E\), in the proportion of the tranfverfe axis to the conjugate; but the tangent of the fame angle \(Q F L\), is to the tangent of the mean motion, anfwering to the area of the elliptic equant \(Q F L\) in the fame proportion. So that the ordinate OH is to the fine of that angle of mean motion, in the duplicate of the faid proportion; and confequently the ordinate \(O H\), in the circle on the radius \(F N\), is the fine of an angle, nearly equal to the mean anomaly joined to the double of Bullialdus's equation.
3. This equation adds to the mean motion in paffing from the aphelion to the perihelion, and fubducts in paffing from the perihelion to the aphelion; as is evident from the tranfit of the point of interfection \(E\) round the periphery of the ellipfis \(L f l\).

In Sir Ifaac Newton's rule (in the before-cited fcholium to the 3 Ift prop. If book,) the angle \(X\) anfwers to this equation for the fegment; excepting that it is there taken in the triplicate proportion of the fine of the mean anomaly, inftead of the triplicate proportion of the ordinate \(O H\). The error of this rule makes

\section*{[ss]}
III. The third part of the inequality, anfwering to the trilinear pace \(O K Q\), being the difference of the elliptic fector \(O F Q\) and the triangle \(O F K\).

The fector \(O Q F\) is proportional to an angle, which is the difference of two angles, whofe tangents are in the given proportion of the femi-latus rectum \(F B\) and the femi-tranfverfe \(F N\), or in the duplicate proportion of the leffer axis to the axis of the orbit. So that this feitor, when at a maximum, is as an angle, whofe fine is to the radius, as the difference of the latus rectum and tranfverfe to their fum; or as the difference of the fquares of the femi-axes to their fum.

The triangle \(O F K\) is proportional to the rectangle of the co-ordinates \(O H\) and \(H F\); that is, as the rectangle of the fine \(O H\) and its cofine, in the circle on the radius \(F N\); or as the fine of the double of that angle, whofe fine is \(O H\); that is, the double of the angle, whofe tangent is to the tangent of the angle \(2 F L\), in the given ratio of the greater to the leffer axis; or whofe tangent is the tangent of the angle of mean motion anfwering to the elliptic fector \(Q F L\), in the duplicate of the faid D 4
ratio.

\section*{[56]}
ratio. But this triangle \(O F K\), when at a maximum, makes an angle of mean motion, which is to the angle called \(R\), as \(B N\), half the difference between the latus rectum and tranfverfe axis, is to the double of the tranfverfe axis.

So that the fector or triangle in orbits nearly circular, is always nearly equal to the double of Bullialdus's equation.

The triangle and fector being thus determined, the equation for the trilinear face is accordingly determined. From what has been faid, it appears, that
i. This equation for the trilinear fpace OKQ, is to that for the triangle \(O K F\), in a ratio compounded of \(B N\), the difference between the femi-tranfverfe and femi-latus rectum to the femilatus rectum, and of the duplicate proportion of the fine \(O H\) to the radius; or \(O K Q\) is to \(O K F\), in a proportion compounded of the duplicate proportion of the diftance of the foci to the fquare of the leffer axis, and the duplicate proportion of the fine OH to the radius. For the trilinear figure \(O K Q\) and the triangle \(O K F\), are nearly as \(O K\) and \(K H\), which are in that proportion ; and confequently it hoids in this proportion to the double of Bullialdus's equation.
2. THIS

\section*{[S7]}
2. This equation, in different angles, is as the content under the fine complement and the cube of the fine. For the triangle \(O K F\), is as the rectangle of the fine and the fine complement.
3. IT is at a maximum, at an angle whofe fine complement is to the radius, as the fquare of the greater axis is to the fum of the fquares of the two axes; which in orbits nearly circular, is about 60 degrees of mean anomaly.
4. In orbits of different eccentricities, it increafes in the quadruplicate proportion of the eccentricity.
s. It obferves the contrary figns to that for the elliptic equant, called Bullialdus's equation; fubducting from the mean motion in the firft and third quadrants, and adding in the fecond and fourth, if the motion is reckoned from the aphelion.

The ufe of thefe equations, in finding the place of a planet from the upper focus, will appear from the following rules, which are eafily proved from what has been faid.

Let \(t\) be equal to \(C A\) the femitranfverfe, \(c\) equal to \(F C\) the diftance of the center from the focus, \(b\) equal to \(C D\) the femi-conjugate, and \(R\) an angle fubtended by an arch equal to the

\section*{[\(5^{9}\)]}
the radius, viz. \(57^{\circ} \cdot 17^{\prime} \cdot 44^{\prime \prime} \cdot 48^{\prime \prime \prime}\), or 57, 295779s degrees. Take an angle \(\tau=\frac{c c}{2 t t} R ; \quad E=\frac{b}{2 t} \tau ; S=\frac{4 c}{3 b} \tau\).

The angle \(T\) be will the greateft equation for the triangle \(O F K\); the angle \(S\) will be the greatef equation for the fegment \(L M G\); and the angle \(E\) will be the greateft equation for the area \(O K F L\). Which greateft equations being found, the equations at any angle of mean anomaly, will be determined by the following rules.

Let \(M\) be the mean anomaly; and let \(\tau\) be to \(\mathcal{T}\) as the fine of the angle \(2 M\) to the radius : In which proportion, as alfo in the following, there is no need of any great exactnefs, it being fufficient to take the proportions in round numbers.

Take \(e\) to \(E\) as the fine of \(2 M \pm 2 \tau\) to the radius; and \(s\) to \(S\) as the cube of the fine of \(M \pm \tau\) to the cube of the radius.

Then the angle \(2 F L\) is equal to
 \(M-e+s\), in the fecond quadrant \(N l\), or \(M+e-s\) in the third quadrant, or \(M-e-s\) in the fourth quadrant.
Note, That the frmall equation \(\tau\) is always of the fame fign with the equation \(e\); and

\section*{[s 9]}
and in the cafe of the planets, always near the double of that equation.

The angle \(R F A\) at the upper focus \(F\) being known, the angle \(R S A\) at the Sun in the other focus, is found by the common rule of Bifhop Ward; viz. the tangent of half the angle \(R S A\), is to be to the tangent of half the angle \(R F A\), always in the given proportion of the perihelion diftance \(S P\) to the aphelion diftance \(S A\). How thefe equations are in the feveral eccentricities of the Moon's orbit, will appear by the following, Table.
\begin{tabular}{|c|c|c|}
\hline Eccentr: & E. & S. \\
\hline & 111 & 11 \\
0.040 & 1.23 & 09 \\
0.045 & 1.45 & 13 \\
0.050 & 2.09 & 17 \\
0.055 & 2.36 & 23 \\
0.060 & 3.06 & 30 \\
0.065 & 3.38 & 38 \\
0.070 & 4.14 & 47 \\
\hline
\end{tabular}

To add one example ; fuppofe the eccentricity 0.060 , the mean anomaly \(30^{\circ}\). The fine of the double of the mean anomaly, that is, the fine of 60 is to the radius, nearly as 87 to 100 ; whence, if the equation \(E=3^{\prime} .06^{\prime \prime}\), be divided in that propor-
\[
\text { [} 60 \text {] }
\]
proportion, it will produce \(2^{\prime} \cdot 40^{\prime \prime}\) nearly , for the equation \(e\) : the fine of \(M\) is, in this cafe, equal to \(\frac{1}{2}\) the radius, the cube is \(\frac{1}{8}\) of the cube of the radius; whence if the equation \(S=30^{\prime \prime}\) be divided in the fame proportion, it will produce near \(4^{\prime \prime}\) for the equation \(s\). Therefore the angle \(R F A\), which is \(M-\mid-e+s\), will be \(3 C^{\circ} .2^{\prime} .44^{\prime \prime}\); and the half is \(15^{\circ} .1^{\prime} .22^{\prime \prime}\); wherefore if the tangent of this angle be diminifhed, in the proportion of 1.06 , the aphelion diftance, to 94 the perihelion diftance, it will produce the tangent of \(13^{\circ} .23^{\prime} .13^{\prime \prime}\); the double of which \(26^{\circ} .46^{\prime} .26^{\prime \prime}\), is the true anomaly or angle at the Sun \(R S A\). And confequently, the equation of the center is \(3^{\circ} 113^{\prime} \cdot 34^{\prime \prime \prime}\) to be fubduated, at 30 degrees mean anomaly.

When the place of a planet is found by this, or any other method; the place may be corrected to any degree of exactnefs by the common property of the equant, viz. that the rays are reciprocally in the duplicate proportion of the velocity about the center. For in this cafe, if there be a difference between the mean motion belonging to the angle affumed at the upper focus, and the given mean motion, the crror of the angic affumed is to the difference, as the rectangle of the femi-axes to the rectangle
\[
\left[\begin{array}{ll}
61
\end{array}\right]
\]
angle of the diftances from the foci. But in orbits like thofe of the planets, the rules as they are delivered above are fufficient of themfelves without further correction.

\section*{}

\section*{POSTSCRIPT: mak}

UPON reviewing thefe few theets after they were printed off which happened a little fooner than I expected, I fear the apology I have offered for delivering the propof:tions relating to the Moon's motion, in this rude manner, without giving any proof of them, or to much as mentioning the fundamental principles of their demonftration, will fcarcely pafs as a 1atisfactory one; efpecially fince there are among thefe propofitions, fome which, I am apt to think, cannot eafily be proved to be either true or falfe, by any methods which are now in common ufe.

Wherffore to render fome fatisfaction in this article, I hall add a few words concerning the principles from whence thefe propofitions, and others of the like nature

\section*{[62]}
nature are derived: and alfo take the opportunity to fubjoin a few remarks, which ought to have been made in their proper places.

Firft, There is a law of motion, which holds in the cafe where a body is deflected by two forces, tending conftantIy to two fixed points.

Which is, That the body, in fuch a cafe, will defcribe, by lines drawn from the two fixt points, equal folids in equal times, about the line joining the faid fixt points.

The law of Kepler, that bodies deferibe equal areas in equal times, about the center of their revolution, is the only general principle, in the modern doatrine of centripetal forces.'

But fince this law, as Sir I faac Newiton has proved, cannot hold, whenever a body has a gravity or force to ariy other than one and the fame point; there feems to be wanting fome fuch law as I have here laid down, that may ferve to explain the motions of the Moon and Satellites, which have a gravity towards two different centers.

It follows as a corollary to the law here laid down, that if a body, gravitating towards two fixt centers, be fuppofed, for given fmall intervals of time,

\section*{[63]}
as moving in a plane paffing through one of the fixt centers, the inclination of the faid plane, to the line joining the centers, will vary according to the area defcribed; that is, if the area be greater, the inclination will be lefs; and if the area be lefs, the inclination will be greater, in order to make the folids equal.

This corollary, when rightly applied, will ferve to explain the variation of the inclination of the plane of the Moon's orbit to the plane of the ecliptic.

And how extremely difficult it is to compute the variation of the inclination in any particular cafe, without the knowledge of fome fuch principle as this is, will beft appear, if any one confider the intricacy of the calculations, ufed in the corollaries to the 34 prop. of the third book of the Principia, in order to ftate the greateft quantity of variation, in that month, when the line of the nodes is in quadrature with the Sun, and that only in particular Numbers, whereby it is determined to be \(2^{\prime} .43^{\prime \prime}\).

Whereas, there is a plain and general rule in this cafe, which follows from what is laid down, though not immediately; namely, that the greateft variation in the faid pofition of the Moon's orbit, is

\section*{[64]}
to the mean inclination of the plane as the difference of the greateft and leaft areas defcribed in the fame time by the Moon about the earth, when in the conjunction and in the quarters to the mean area.

Wherefore, if \(S\) be to \(L\), as the Sun's period to the Moon's period: The greateft area is to the leaft, as \(V \overline{S S+3 L L}\) to \(S\), or as \(S+\frac{3 L L}{2 S}\) to \(S\) nearly, by what is faid on this article in the 29 th page. So that the difference of areas is to the mean area, as \(\frac{3}{2} L L\) to \(S S+\frac{3}{4} L L\); and in the fame proportion is the greateft variation of the inclination of the plane in this month to the mean inclination, which agrees nearly with Sir I aac's computation.

Secondly, There is a general method for affigning the laws of the motion of a body to and from the center, abftractly confider'd, from its motion about the center.

The motion to and from the center is called by Kepler a Libratory motion; the knowledge of which feems abfolutely requifite, to define the laws of the revolution of a body, in refpect of the apfides of its orbit.

For the revolution of a body, from apfis to apfis, is performed in the time
of the whole libratory motion; the aps fides of the: orbit being the extreme points, wherein the libratory motion ceafes.

So that, according to this method, the motion of a body round the center, is not confider'd as a continued deflection from a ftreight line; but as a motion compounded of a circulatory motion round the center, and a rectilinear motion to or from the center.

Each of which motions trequire a proper Equant. Of the equant for the motion round the center, I have already given feveral examples. And in the cafe of all motions, which are governed by a gravity or force tending to a fixt point; the real orbit in which the body moves, is the equant for this motion. In all other cafes it is a different figure.

The Equant for the libratory motion, is a curve line figure, the areas of which ferve to fhew the time wherein the feveral fpaces of the libration are performed.

Which figure is to be determined, by knowing the law of the gravity to the center: For the libratory force, to accelerate or retard the motion to or from the center, is the difference between the gravity of the body to the center, and the centrifugal force arifing from E

\section*{[66]}
the circulatory motion. But the latter is always under one rule: For in all revolutions round a center, in any curve line, whether defcribed by a centripetal force or not, the centrifugal force is directly in the duplicate proportion of the area defcribed in a given fmall time, and reciprocally in the triplicate proportion of the diftance; which is an immediate confequence of a known propofition of Mr. Huygens. The like proportion alfo holds as to the centripetal force in all circular motions, from a known propofition of Sir I/aac Newton. But what is true of the centripetal force in circles, is univerfally true of the other force in orbits of any form.

So that by knowing the gravity of the body, fince the other force is always known, the difference, which is the abfolute force to move the body to or from the center, will be known; and from thence the velocity of the motion, and the fpace defcribed in any given time, may be found, and the equant defcribed. Thefe hints may be fufficient to fhew what the method is.

To add an example. If the gravity be reciprocally as the fquare of the diftance; the equant for the libratory motion, will be found to be an ellipfis fimilar

\section*{[67]}
fimilar to the orbit, whofe longer axis is the double of the eccentricity; the center of the libratory motion, that is the place where it is fwifteft, will be in the focus; the time of the libration, through the feveral fpaces, is to be meafured by fectors of the faid ellipfis, fimilar to thofe defcribed by the body round the focus of the orbit; and the period of the libratory motion will be the fame with the period of the revolution.
In any other law of gravity, the equant for the libratory motion, will either be of a form different from the orbit, or if it be of the fame form, it muft not be fimilarly divided.

I may juft mention, that the equant for the libratory motion, in the cafe of the Moon, is a curve of the third kind, or whofe equation is of four dimenfions; but is to be defribed by an ellipfis, the center of the libration not being in the focus.
From this method of refolving the motion, it will not be difficult to hew the general caufes of the alteration of the eccentricity and inequality in the motion of the apogee. For when the line of apfides is moving towards the Sun, it may be eafily fhewn, that fince the external force in the apfides, is then centriE. 2 fugal,
fugal, it will contribute to lengthen the fpace and time of the libration; by lengthening the fpace, it increafes the eccentricity; and by lengthening the time of the libration, it protracts the time of the revolution to the apfis, and caufes what is improperly called a motion of the apfis forward. But when the line of apfides is moving to the quadratures, the external force in the apfides, is at that time centripetal; which will contribute to fhorten the face and time of libration; and by fhortening the face will thereby leffen the eccentricity, and by fhortening the time of libration, will thereby contract the time of the revolution to the apfis; and caufe what is improperly called a retrograde motion of the apfis.

I fhall only add a few remarks, which ought to have been made in their proper places.

As to the motion of the Moon in the elliptic epicycle (page 9.) it fhould have been mentioned, that there is no need of any accurate and perfect defcription of the curve called an ellipfis, it being only to fhew the elongation of the Moon, from the center of the epicycle; which doth not require any fuch accurate defcription,

\section*{[. 99]}

It hould have been faid, that when Fig. i. the Moon is in any place of its orbit, fuppofe fomewhere at \(N\), in that half of the orbit which is next the Sun, it then being nearer the Sun than the Earth, has thereby a greater gravity to the Sun. than the Earth; which excefs of gravity, according to Sir Ifaac Newton's method, confifts of two parts; one acting in the line \(N V\), parallel to that which joins the Earth and Sun; and the other acting in the line \(V B\) directed to the Earth; and thefe two forces, being compounded into one, make a force directed in the line \(N B\); which is in proportion to the force of gravity, as that line \(N B\) is to \(\tau B\) nearly. Wherefore, as there is a force conftantly impelling the Moon fomewhere towards the point \(B\), this force is fuppofed to inflect the motion of the Moon into a curve line about that point; for the fame reafon as the gravity of it to the Earth, is fuppofed to inflect its motion into a curve line about the Earth: not that the Moon can actually have fo many diftinct motions, but the one fimple motion of the Moon round the Sun is fuppofed to arife from a compofition of thefe feveral motions.

\section*{[70]}

In the laft article on the fmall annual equations, (page 38.) thefe rules ought to have been added.
Let \(\not \mathscr{F}\) be the equation of the Sun's center; \(P\) the mean periodical time of the node or apogee; \(S\) the mean fynodical time of the Sun's revolution to the node or apogee: Then will \(\frac{3 S}{2 P} \mathbb{E}\) be the annual equation of the node or apogee, according as \(S\) and \(P\) are expounded.

The like rule will ferve for the annual equation of the Moon's mean motion. If \(S\) be put for the Sun's period; \(\boldsymbol{P}\) for the mean fynodical period of the Moon to the Sun; and \(L\) for the Moon's period to the Stars: The annual equation of the Moon's mean motion will be \(\frac{3 L L}{2 P S}\) 左:

According to thefe rules when expounded, the equation for the node will be found to be always in proportion to the equation of the Sun's center, nearly as 1 to 13 .
The equation of the apogee to the equation of the Sun's center, as 10 to 53 -

And the equation of the Moon's mean motion to the fame, as 8 to 77 .

I

\section*{[71]}

It may be throughout obferved, that the propofitions are in general terms, fo as to ferve, mutatis mutandis, for any other fatellite, as well as the Moon.

There might have been feveral other obfervations and remarks made in many other places, had there been fufficient time for it. But perhaps what I have already faid may be too much, confidering the manner in which it is delivered.

\author{
ERRATVM. \\ Page II. 1. Ix. for 8th, read 28th.
}
\(F \quad I \quad N \quad I \quad S\).

\section*{ERRATA.}

\section*{VOLUME I.}

PAGE II 7. for drawing, read drape. p. 156. f. 2 AB, r. \(\frac{1}{2} A B\). p. 164.1 . 7. 10, 20 p. 165.1 . 9. p. 171. 1. 27. f. right line mole power is the area \&c. r. right line whole Square is equal to the area - \&c. p. \(166.1 .25,29\). f. right line whole power is the rectangle \&c. r. right line whole Square is equal to the reCtangle \&c. p. 192. 1. 23, 24. r. \(A^{\frac{1}{54}-3}\) or \(A^{\frac{1}{1-}-3}\), or \(A^{\frac{4}{4}-3}\) or \(A^{\frac{4}{9}-3,} 1\). 29. x.
\(A^{\stackrel{n}{m}-3,}\) p. 203. dele if. p. 229. 1. penult. dele is. p. 240. 1. 26. dele near. p. 243. 1. 21. f. when. r. because. p. 272.1. 3. r. is in the fame ratio.

\section*{VOLUME II.}

PAGE 6. Line 21 . for its, read the. p. 24 1. 21. dele Fig. 2. p. 50. 1. 7. from the bottom. f. Fig. \(5,6,7\) r. Fig. \(6,7,8\). and fo in page following. p. 95. 1. 4. from the bottom, and p. 100.1. 5. f. Averdupis, r. Troy. p. 130. 1. 28. r. and the water, \&c. p. 140. 1. 14. f. and the, r. and zobofe. p. 144. 1. ult. f. but, r. this. p. 161. 1. 2. f. may, r. will. p. 169. 1. 6.f. leave for forme time, r. would otherwise leave. 1. 21. r. receding from the parts of the body where it is preffed, \&c. p. 338. 1. 7f. Fig. i. r. Fig. 2. p. 341. 1. 1. f. Fig. 2. r. Fig. 3. p352.1. \(\rightarrow\) elliptic.

-

\(\square\) -
-
```


[^0]:    

[^1]:    Q 2
    the

